mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-23 14:40:03 +08:00

### What problem does this PR solve? Add license statement. ### Type of change - [x] Refactoring Signed-off-by: Jin Hai <haijin.chn@gmail.com>
283 lines
10 KiB
Python
283 lines
10 KiB
Python
#
|
||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
#
|
||
|
||
import logging
|
||
import copy
|
||
import re
|
||
|
||
from api.db import ParserType
|
||
from io import BytesIO
|
||
from rag.nlp import rag_tokenizer, tokenize, tokenize_table, bullets_category, title_frequency, tokenize_chunks, docx_question_level
|
||
from rag.utils import num_tokens_from_string
|
||
from deepdoc.parser import PdfParser, PlainParser, DocxParser
|
||
from docx import Document
|
||
from PIL import Image
|
||
|
||
|
||
class Pdf(PdfParser):
|
||
def __init__(self):
|
||
self.model_speciess = ParserType.MANUAL.value
|
||
super().__init__()
|
||
|
||
def __call__(self, filename, binary=None, from_page=0,
|
||
to_page=100000, zoomin=3, callback=None):
|
||
from timeit import default_timer as timer
|
||
start = timer()
|
||
callback(msg="OCR started")
|
||
self.__images__(
|
||
filename if not binary else binary,
|
||
zoomin,
|
||
from_page,
|
||
to_page,
|
||
callback
|
||
)
|
||
callback(msg="OCR finished ({:.2f}s)".format(timer() - start))
|
||
# for bb in self.boxes:
|
||
# for b in bb:
|
||
# print(b)
|
||
logging.debug("OCR: {}".format(timer() - start))
|
||
|
||
start = timer()
|
||
self._layouts_rec(zoomin)
|
||
callback(0.65, "Layout analysis ({:.2f}s)".format(timer() - start))
|
||
logging.debug("layouts: {}".format(timer() - start))
|
||
|
||
start = timer()
|
||
self._table_transformer_job(zoomin)
|
||
callback(0.67, "Table analysis ({:.2f}s)".format(timer() - start))
|
||
|
||
start = timer()
|
||
self._text_merge()
|
||
tbls = self._extract_table_figure(True, zoomin, True, True)
|
||
self._concat_downward()
|
||
self._filter_forpages()
|
||
callback(0.68, "Text merged ({:.2f}s)".format(timer() - start))
|
||
|
||
# clean mess
|
||
for b in self.boxes:
|
||
b["text"] = re.sub(r"([\t ]|\u3000){2,}", " ", b["text"].strip())
|
||
|
||
return [(b["text"], b.get("layoutno", ""), self.get_position(b, zoomin))
|
||
for i, b in enumerate(self.boxes)], tbls
|
||
|
||
|
||
class Docx(DocxParser):
|
||
def __init__(self):
|
||
pass
|
||
|
||
def get_picture(self, document, paragraph):
|
||
img = paragraph._element.xpath('.//pic:pic')
|
||
if not img:
|
||
return None
|
||
img = img[0]
|
||
embed = img.xpath('.//a:blip/@r:embed')[0]
|
||
related_part = document.part.related_parts[embed]
|
||
image = related_part.image
|
||
image = Image.open(BytesIO(image.blob))
|
||
return image
|
||
|
||
def concat_img(self, img1, img2):
|
||
if img1 and not img2:
|
||
return img1
|
||
if not img1 and img2:
|
||
return img2
|
||
if not img1 and not img2:
|
||
return None
|
||
width1, height1 = img1.size
|
||
width2, height2 = img2.size
|
||
|
||
new_width = max(width1, width2)
|
||
new_height = height1 + height2
|
||
new_image = Image.new('RGB', (new_width, new_height))
|
||
|
||
new_image.paste(img1, (0, 0))
|
||
new_image.paste(img2, (0, height1))
|
||
|
||
return new_image
|
||
|
||
def __call__(self, filename, binary=None, from_page=0, to_page=100000, callback=None):
|
||
self.doc = Document(
|
||
filename) if not binary else Document(BytesIO(binary))
|
||
pn = 0
|
||
last_answer, last_image = "", None
|
||
question_stack, level_stack = [], []
|
||
ti_list = []
|
||
for p in self.doc.paragraphs:
|
||
if pn > to_page:
|
||
break
|
||
question_level, p_text = 0, ''
|
||
if from_page <= pn < to_page and p.text.strip():
|
||
question_level, p_text = docx_question_level(p)
|
||
if not question_level or question_level > 6: # not a question
|
||
last_answer = f'{last_answer}\n{p_text}'
|
||
current_image = self.get_picture(self.doc, p)
|
||
last_image = self.concat_img(last_image, current_image)
|
||
else: # is a question
|
||
if last_answer or last_image:
|
||
sum_question = '\n'.join(question_stack)
|
||
if sum_question:
|
||
ti_list.append((f'{sum_question}\n{last_answer}', last_image))
|
||
last_answer, last_image = '', None
|
||
|
||
i = question_level
|
||
while question_stack and i <= level_stack[-1]:
|
||
question_stack.pop()
|
||
level_stack.pop()
|
||
question_stack.append(p_text)
|
||
level_stack.append(question_level)
|
||
for run in p.runs:
|
||
if 'lastRenderedPageBreak' in run._element.xml:
|
||
pn += 1
|
||
continue
|
||
if 'w:br' in run._element.xml and 'type="page"' in run._element.xml:
|
||
pn += 1
|
||
if last_answer:
|
||
sum_question = '\n'.join(question_stack)
|
||
if sum_question:
|
||
ti_list.append((f'{sum_question}\n{last_answer}', last_image))
|
||
|
||
tbls = []
|
||
for tb in self.doc.tables:
|
||
html= "<table>"
|
||
for r in tb.rows:
|
||
html += "<tr>"
|
||
i = 0
|
||
while i < len(r.cells):
|
||
span = 1
|
||
c = r.cells[i]
|
||
for j in range(i+1, len(r.cells)):
|
||
if c.text == r.cells[j].text:
|
||
span += 1
|
||
i = j
|
||
i += 1
|
||
html += f"<td>{c.text}</td>" if span == 1 else f"<td colspan='{span}'>{c.text}</td>"
|
||
html += "</tr>"
|
||
html += "</table>"
|
||
tbls.append(((None, html), ""))
|
||
return ti_list, tbls
|
||
|
||
|
||
def chunk(filename, binary=None, from_page=0, to_page=100000,
|
||
lang="Chinese", callback=None, **kwargs):
|
||
"""
|
||
Only pdf is supported.
|
||
"""
|
||
pdf_parser = None
|
||
doc = {
|
||
"docnm_kwd": filename
|
||
}
|
||
doc["title_tks"] = rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
|
||
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
|
||
# is it English
|
||
eng = lang.lower() == "english" # pdf_parser.is_english
|
||
if re.search(r"\.pdf$", filename, re.IGNORECASE):
|
||
pdf_parser = Pdf() if kwargs.get(
|
||
"parser_config", {}).get(
|
||
"layout_recognize", True) else PlainParser()
|
||
sections, tbls = pdf_parser(filename if not binary else binary,
|
||
from_page=from_page, to_page=to_page, callback=callback)
|
||
if sections and len(sections[0]) < 3:
|
||
sections = [(t, lvl, [[0] * 5]) for t, lvl in sections]
|
||
# set pivot using the most frequent type of title,
|
||
# then merge between 2 pivot
|
||
if len(sections) > 0 and len(pdf_parser.outlines) / len(sections) > 0.03:
|
||
max_lvl = max([lvl for _, lvl in pdf_parser.outlines])
|
||
most_level = max(0, max_lvl - 1)
|
||
levels = []
|
||
for txt, _, _ in sections:
|
||
for t, lvl in pdf_parser.outlines:
|
||
tks = set([t[i] + t[i + 1] for i in range(len(t) - 1)])
|
||
tks_ = set([txt[i] + txt[i + 1]
|
||
for i in range(min(len(t), len(txt) - 1))])
|
||
if len(set(tks & tks_)) / max([len(tks), len(tks_), 1]) > 0.8:
|
||
levels.append(lvl)
|
||
break
|
||
else:
|
||
levels.append(max_lvl + 1)
|
||
|
||
else:
|
||
bull = bullets_category([txt for txt, _, _ in sections])
|
||
most_level, levels = title_frequency(
|
||
bull, [(txt, lvl) for txt, lvl, _ in sections])
|
||
|
||
assert len(sections) == len(levels)
|
||
sec_ids = []
|
||
sid = 0
|
||
for i, lvl in enumerate(levels):
|
||
if lvl <= most_level and i > 0 and lvl != levels[i - 1]:
|
||
sid += 1
|
||
sec_ids.append(sid)
|
||
# print(lvl, self.boxes[i]["text"], most_level, sid)
|
||
|
||
sections = [(txt, sec_ids[i], poss)
|
||
for i, (txt, _, poss) in enumerate(sections)]
|
||
for (img, rows), poss in tbls:
|
||
if not rows:
|
||
continue
|
||
sections.append((rows if isinstance(rows, str) else rows[0], -1,
|
||
[(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss]))
|
||
|
||
def tag(pn, left, right, top, bottom):
|
||
if pn + left + right + top + bottom == 0:
|
||
return ""
|
||
return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
|
||
.format(pn, left, right, top, bottom)
|
||
|
||
chunks = []
|
||
last_sid = -2
|
||
tk_cnt = 0
|
||
for txt, sec_id, poss in sorted(sections, key=lambda x: (
|
||
x[-1][0][0], x[-1][0][3], x[-1][0][1])):
|
||
poss = "\t".join([tag(*pos) for pos in poss])
|
||
if tk_cnt < 32 or (tk_cnt < 1024 and (sec_id == last_sid or sec_id == -1)):
|
||
if chunks:
|
||
chunks[-1] += "\n" + txt + poss
|
||
tk_cnt += num_tokens_from_string(txt)
|
||
continue
|
||
chunks.append(txt + poss)
|
||
tk_cnt = num_tokens_from_string(txt)
|
||
if sec_id > -1:
|
||
last_sid = sec_id
|
||
|
||
res = tokenize_table(tbls, doc, eng)
|
||
res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
|
||
return res
|
||
|
||
elif re.search(r"\.docx?$", filename, re.IGNORECASE):
|
||
docx_parser = Docx()
|
||
ti_list, tbls = docx_parser(filename, binary,
|
||
from_page=0, to_page=10000, callback=callback)
|
||
res = tokenize_table(tbls, doc, eng)
|
||
for text, image in ti_list:
|
||
d = copy.deepcopy(doc)
|
||
d['image'] = image
|
||
tokenize(d, text, eng)
|
||
res.append(d)
|
||
return res
|
||
else:
|
||
raise NotImplementedError("file type not supported yet(pdf and docx supported)")
|
||
|
||
|
||
if __name__ == "__main__":
|
||
import sys
|
||
|
||
|
||
def dummy(prog=None, msg=""):
|
||
pass
|
||
|
||
|
||
chunk(sys.argv[1], callback=dummy)
|