mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-21 13:40:00 +08:00
171 lines
6.4 KiB
Python
171 lines
6.4 KiB
Python
import copy
|
|
import random
|
|
import re
|
|
from io import BytesIO
|
|
from xpinyin import Pinyin
|
|
import numpy as np
|
|
import pandas as pd
|
|
from nltk import word_tokenize
|
|
from openpyxl import load_workbook
|
|
from dateutil.parser import parse as datetime_parse
|
|
from rag.parser import is_english, tokenize
|
|
from rag.nlp import huqie, stemmer
|
|
|
|
|
|
class Excel(object):
|
|
def __call__(self, fnm, binary=None, callback=None):
|
|
if not binary:
|
|
wb = load_workbook(fnm)
|
|
else:
|
|
wb = load_workbook(BytesIO(binary))
|
|
total = 0
|
|
for sheetname in wb.sheetnames:
|
|
total += len(list(wb[sheetname].rows))
|
|
|
|
res, fails, done = [], [], 0
|
|
for sheetname in wb.sheetnames:
|
|
ws = wb[sheetname]
|
|
rows = list(ws.rows)
|
|
headers = [cell.value for cell in rows[0]]
|
|
missed = set([i for i,h in enumerate(headers) if h is None])
|
|
headers = [cell.value for i,cell in enumerate(rows[0]) if i not in missed]
|
|
data = []
|
|
for i, r in enumerate(rows[1:]):
|
|
row = [cell.value for ii,cell in enumerate(r) if ii not in missed]
|
|
if len(row) != len(headers):
|
|
fails.append(str(i))
|
|
continue
|
|
data.append(row)
|
|
done += 1
|
|
if done % 999 == 0:
|
|
callback(done * 0.6/total, ("Extract records: {}".format(len(res)) + (f"{len(fails)} failure({sheetname}), line: %s..."%(",".join(fails[:3])) if fails else "")))
|
|
res.append(pd.DataFrame(np.array(data), columns=headers))
|
|
|
|
callback(0.6, ("Extract records: {}. ".format(done) + (
|
|
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
|
|
return res
|
|
|
|
|
|
def trans_datatime(s):
|
|
try:
|
|
return datetime_parse(s.strip()).strftime("%Y-%m-%dT%H:%M:%S")
|
|
except Exception as e:
|
|
pass
|
|
|
|
|
|
def trans_bool(s):
|
|
if re.match(r"(true|yes|是)$", str(s).strip(), flags=re.IGNORECASE): return ["yes", "是"]
|
|
if re.match(r"(false|no|否)$", str(s).strip(), flags=re.IGNORECASE): return ["no", "否"]
|
|
|
|
|
|
def column_data_type(arr):
|
|
uni = len(set([a for a in arr if a is not None]))
|
|
counts = {"int": 0, "float": 0, "text": 0, "datetime": 0, "bool": 0}
|
|
trans = {t:f for f,t in [(int, "int"), (float, "float"), (trans_datatime, "datetime"), (trans_bool, "bool"), (str, "text")]}
|
|
for a in arr:
|
|
if a is None:continue
|
|
if re.match(r"[+-]?[0-9]+(\.0+)?$", str(a).replace("%%", "")):
|
|
counts["int"] += 1
|
|
elif re.match(r"[+-]?[0-9.]+$", str(a).replace("%%", "")):
|
|
counts["float"] += 1
|
|
elif re.match(r"(true|false|yes|no|是|否)$", str(a), flags=re.IGNORECASE):
|
|
counts["bool"] += 1
|
|
elif trans_datatime(str(a)):
|
|
counts["datetime"] += 1
|
|
else: counts["text"] += 1
|
|
counts = sorted(counts.items(), key=lambda x: x[1]*-1)
|
|
ty = counts[0][0]
|
|
for i in range(len(arr)):
|
|
if arr[i] is None:continue
|
|
try:
|
|
arr[i] = trans[ty](str(arr[i]))
|
|
except Exception as e:
|
|
arr[i] = None
|
|
if ty == "text":
|
|
if len(arr) > 128 and uni/len(arr) < 0.1:
|
|
ty = "keyword"
|
|
return arr, ty
|
|
|
|
|
|
def chunk(filename, binary=None, callback=None, **kwargs):
|
|
dfs = []
|
|
if re.search(r"\.xlsx?$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
excel_parser = Excel()
|
|
dfs = excel_parser(filename, binary, callback)
|
|
elif re.search(r"\.(txt|csv)$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
txt = ""
|
|
if binary:
|
|
txt = binary.decode("utf-8")
|
|
else:
|
|
with open(filename, "r") as f:
|
|
while True:
|
|
l = f.readline()
|
|
if not l: break
|
|
txt += l
|
|
lines = txt.split("\n")
|
|
fails = []
|
|
headers = lines[0].split(kwargs.get("delimiter", "\t"))
|
|
rows = []
|
|
for i, line in enumerate(lines[1:]):
|
|
row = [l for l in line.split(kwargs.get("delimiter", "\t"))]
|
|
if len(row) != len(headers):
|
|
fails.append(str(i))
|
|
continue
|
|
rows.append(row)
|
|
if len(rows) % 999 == 0:
|
|
callback(len(rows) * 0.6 / len(lines), ("Extract records: {}".format(len(rows)) + (
|
|
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
|
|
|
|
callback(0.6, ("Extract records: {}".format(len(rows)) + (
|
|
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
|
|
|
|
dfs = [pd.DataFrame(np.array(rows), columns=headers)]
|
|
|
|
else: raise NotImplementedError("file type not supported yet(excel, text, csv supported)")
|
|
|
|
res = []
|
|
PY = Pinyin()
|
|
fieds_map = {"text": "_tks", "int": "_int", "keyword": "_kwd", "float": "_flt", "datetime": "_dt", "bool": "_kwd"}
|
|
for df in dfs:
|
|
for n in ["id", "_id", "index", "idx"]:
|
|
if n in df.columns:del df[n]
|
|
clmns = df.columns.values
|
|
txts = list(copy.deepcopy(clmns))
|
|
py_clmns = [PY.get_pinyins(n)[0].replace("-", "_") for n in clmns]
|
|
clmn_tys = []
|
|
for j in range(len(clmns)):
|
|
cln,ty = column_data_type(df[clmns[j]])
|
|
clmn_tys.append(ty)
|
|
df[clmns[j]] = cln
|
|
if ty == "text": txts.extend([str(c) for c in cln if c])
|
|
clmns_map = [(py_clmns[j] + fieds_map[clmn_tys[j]], clmns[j]) for i in range(len(clmns))]
|
|
# TODO: set this column map to KB parser configuration
|
|
|
|
eng = is_english(txts)
|
|
for ii,row in df.iterrows():
|
|
d = {}
|
|
row_txt = []
|
|
for j in range(len(clmns)):
|
|
if row[clmns[j]] is None:continue
|
|
fld = clmns_map[j][0]
|
|
d[fld] = row[clmns[j]] if clmn_tys[j] != "text" else huqie.qie(row[clmns[j]])
|
|
row_txt.append("{}:{}".format(clmns[j], row[clmns[j]]))
|
|
if not row_txt:continue
|
|
tokenize(d, "; ".join(row_txt), eng)
|
|
print(d)
|
|
res.append(d)
|
|
callback(0.6, "")
|
|
|
|
return res
|
|
|
|
|
|
|
|
if __name__== "__main__":
|
|
import sys
|
|
def dummy(a, b):
|
|
pass
|
|
chunk(sys.argv[1], callback=dummy)
|
|
|