mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-20 13:10:05 +08:00

### What problem does this PR solve? Introduced [beartype](https://github.com/beartype/beartype) for runtime type-checking. ### Type of change - [x] New Feature (non-breaking change which adds functionality)
720 lines
26 KiB
Python
720 lines
26 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import logging
|
|
import re
|
|
import threading
|
|
import requests
|
|
from huggingface_hub import snapshot_download
|
|
from zhipuai import ZhipuAI
|
|
import os
|
|
from abc import ABC
|
|
from ollama import Client
|
|
import dashscope
|
|
from openai import OpenAI
|
|
import numpy as np
|
|
import asyncio
|
|
|
|
from api import settings
|
|
from api.utils.file_utils import get_home_cache_dir
|
|
from rag.utils import num_tokens_from_string, truncate
|
|
import google.generativeai as genai
|
|
import json
|
|
|
|
class Base(ABC):
|
|
def __init__(self, key, model_name):
|
|
pass
|
|
|
|
def encode(self, texts: list, batch_size=32):
|
|
raise NotImplementedError("Please implement encode method!")
|
|
|
|
def encode_queries(self, text: str):
|
|
raise NotImplementedError("Please implement encode method!")
|
|
|
|
|
|
class DefaultEmbedding(Base):
|
|
_model = None
|
|
_model_lock = threading.Lock()
|
|
def __init__(self, key, model_name, **kwargs):
|
|
"""
|
|
If you have trouble downloading HuggingFace models, -_^ this might help!!
|
|
|
|
For Linux:
|
|
export HF_ENDPOINT=https://hf-mirror.com
|
|
|
|
For Windows:
|
|
Good luck
|
|
^_-
|
|
|
|
"""
|
|
if not settings.LIGHTEN and not DefaultEmbedding._model:
|
|
with DefaultEmbedding._model_lock:
|
|
from FlagEmbedding import FlagModel
|
|
import torch
|
|
if not DefaultEmbedding._model:
|
|
try:
|
|
DefaultEmbedding._model = FlagModel(os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
|
|
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
|
|
use_fp16=torch.cuda.is_available())
|
|
except Exception:
|
|
model_dir = snapshot_download(repo_id="BAAI/bge-large-zh-v1.5",
|
|
local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
|
|
local_dir_use_symlinks=False)
|
|
DefaultEmbedding._model = FlagModel(model_dir,
|
|
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
|
|
use_fp16=torch.cuda.is_available())
|
|
self._model = DefaultEmbedding._model
|
|
|
|
def encode(self, texts: list, batch_size=32):
|
|
texts = [truncate(t, 2048) for t in texts]
|
|
token_count = 0
|
|
for t in texts:
|
|
token_count += num_tokens_from_string(t)
|
|
res = []
|
|
for i in range(0, len(texts), batch_size):
|
|
res.extend(self._model.encode(texts[i:i + batch_size]).tolist())
|
|
return np.array(res), token_count
|
|
|
|
def encode_queries(self, text: str):
|
|
token_count = num_tokens_from_string(text)
|
|
return self._model.encode_queries([text]).tolist()[0], token_count
|
|
|
|
|
|
class OpenAIEmbed(Base):
|
|
def __init__(self, key, model_name="text-embedding-ada-002",
|
|
base_url="https://api.openai.com/v1"):
|
|
if not base_url:
|
|
base_url = "https://api.openai.com/v1"
|
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list, batch_size=32):
|
|
texts = [truncate(t, 8191) for t in texts]
|
|
res = self.client.embeddings.create(input=texts,
|
|
model=self.model_name)
|
|
return np.array([d.embedding for d in res.data]
|
|
), res.usage.total_tokens
|
|
|
|
def encode_queries(self, text):
|
|
res = self.client.embeddings.create(input=[truncate(text, 8191)],
|
|
model=self.model_name)
|
|
return np.array(res.data[0].embedding), res.usage.total_tokens
|
|
|
|
|
|
class LocalAIEmbed(Base):
|
|
def __init__(self, key, model_name, base_url):
|
|
if not base_url:
|
|
raise ValueError("Local embedding model url cannot be None")
|
|
if base_url.split("/")[-1] != "v1":
|
|
base_url = os.path.join(base_url, "v1")
|
|
self.client = OpenAI(api_key="empty", base_url=base_url)
|
|
self.model_name = model_name.split("___")[0]
|
|
|
|
def encode(self, texts: list, batch_size=32):
|
|
res = self.client.embeddings.create(input=texts, model=self.model_name)
|
|
return (
|
|
np.array([d.embedding for d in res.data]),
|
|
1024,
|
|
) # local embedding for LmStudio donot count tokens
|
|
|
|
def encode_queries(self, text):
|
|
embds, cnt = self.encode([text])
|
|
return np.array(embds[0]), cnt
|
|
|
|
|
|
class AzureEmbed(OpenAIEmbed):
|
|
def __init__(self, key, model_name, **kwargs):
|
|
from openai.lib.azure import AzureOpenAI
|
|
api_key = json.loads(key).get('api_key', '')
|
|
api_version = json.loads(key).get('api_version', '2024-02-01')
|
|
self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
|
|
self.model_name = model_name
|
|
|
|
|
|
class BaiChuanEmbed(OpenAIEmbed):
|
|
def __init__(self, key,
|
|
model_name='Baichuan-Text-Embedding',
|
|
base_url='https://api.baichuan-ai.com/v1'):
|
|
if not base_url:
|
|
base_url = "https://api.baichuan-ai.com/v1"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class QWenEmbed(Base):
|
|
def __init__(self, key, model_name="text_embedding_v2", **kwargs):
|
|
dashscope.api_key = key
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list, batch_size=10):
|
|
import dashscope
|
|
batch_size = min(batch_size, 4)
|
|
try:
|
|
res = []
|
|
token_count = 0
|
|
texts = [truncate(t, 2048) for t in texts]
|
|
for i in range(0, len(texts), batch_size):
|
|
resp = dashscope.TextEmbedding.call(
|
|
model=self.model_name,
|
|
input=texts[i:i + batch_size],
|
|
text_type="document"
|
|
)
|
|
embds = [[] for _ in range(len(resp["output"]["embeddings"]))]
|
|
for e in resp["output"]["embeddings"]:
|
|
embds[e["text_index"]] = e["embedding"]
|
|
res.extend(embds)
|
|
token_count += resp["usage"]["total_tokens"]
|
|
return np.array(res), token_count
|
|
except Exception as e:
|
|
raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
|
|
return np.array([]), 0
|
|
|
|
def encode_queries(self, text):
|
|
try:
|
|
resp = dashscope.TextEmbedding.call(
|
|
model=self.model_name,
|
|
input=text[:2048],
|
|
text_type="query"
|
|
)
|
|
return np.array(resp["output"]["embeddings"][0]
|
|
["embedding"]), resp["usage"]["total_tokens"]
|
|
except Exception:
|
|
raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
|
|
return np.array([]), 0
|
|
|
|
|
|
class ZhipuEmbed(Base):
|
|
def __init__(self, key, model_name="embedding-2", **kwargs):
|
|
self.client = ZhipuAI(api_key=key)
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list, batch_size=32):
|
|
arr = []
|
|
tks_num = 0
|
|
for txt in texts:
|
|
res = self.client.embeddings.create(input=txt,
|
|
model=self.model_name)
|
|
arr.append(res.data[0].embedding)
|
|
tks_num += res.usage.total_tokens
|
|
return np.array(arr), tks_num
|
|
|
|
def encode_queries(self, text):
|
|
res = self.client.embeddings.create(input=text,
|
|
model=self.model_name)
|
|
return np.array(res.data[0].embedding), res.usage.total_tokens
|
|
|
|
|
|
class OllamaEmbed(Base):
|
|
def __init__(self, key, model_name, **kwargs):
|
|
self.client = Client(host=kwargs["base_url"])
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list, batch_size=32):
|
|
arr = []
|
|
tks_num = 0
|
|
for txt in texts:
|
|
res = self.client.embeddings(prompt=txt,
|
|
model=self.model_name)
|
|
arr.append(res["embedding"])
|
|
tks_num += 128
|
|
return np.array(arr), tks_num
|
|
|
|
def encode_queries(self, text):
|
|
res = self.client.embeddings(prompt=text,
|
|
model=self.model_name)
|
|
return np.array(res["embedding"]), 128
|
|
|
|
|
|
class FastEmbed(Base):
|
|
_model = None
|
|
|
|
def __init__(
|
|
self,
|
|
key: str | None = None,
|
|
model_name: str = "BAAI/bge-small-en-v1.5",
|
|
cache_dir: str | None = None,
|
|
threads: int | None = None,
|
|
**kwargs,
|
|
):
|
|
if not settings.LIGHTEN and not FastEmbed._model:
|
|
from fastembed import TextEmbedding
|
|
self._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
|
|
|
|
def encode(self, texts: list, batch_size=32):
|
|
# Using the internal tokenizer to encode the texts and get the total
|
|
# number of tokens
|
|
encodings = self._model.model.tokenizer.encode_batch(texts)
|
|
total_tokens = sum(len(e) for e in encodings)
|
|
|
|
embeddings = [e.tolist() for e in self._model.embed(texts, batch_size)]
|
|
|
|
return np.array(embeddings), total_tokens
|
|
|
|
def encode_queries(self, text: str):
|
|
# Using the internal tokenizer to encode the texts and get the total
|
|
# number of tokens
|
|
encoding = self._model.model.tokenizer.encode(text)
|
|
embedding = next(self._model.query_embed(text)).tolist()
|
|
|
|
return np.array(embedding), len(encoding.ids)
|
|
|
|
|
|
class XinferenceEmbed(Base):
|
|
def __init__(self, key, model_name="", base_url=""):
|
|
if base_url.split("/")[-1] != "v1":
|
|
base_url = os.path.join(base_url, "v1")
|
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list, batch_size=32):
|
|
res = self.client.embeddings.create(input=texts,
|
|
model=self.model_name)
|
|
return np.array([d.embedding for d in res.data]
|
|
), res.usage.total_tokens
|
|
|
|
def encode_queries(self, text):
|
|
res = self.client.embeddings.create(input=[text],
|
|
model=self.model_name)
|
|
return np.array(res.data[0].embedding), res.usage.total_tokens
|
|
|
|
|
|
class YoudaoEmbed(Base):
|
|
_client = None
|
|
|
|
def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs):
|
|
if not settings.LIGHTEN and not YoudaoEmbed._client:
|
|
from BCEmbedding import EmbeddingModel as qanthing
|
|
try:
|
|
logging.info("LOADING BCE...")
|
|
YoudaoEmbed._client = qanthing(model_name_or_path=os.path.join(
|
|
get_home_cache_dir(),
|
|
"bce-embedding-base_v1"))
|
|
except Exception:
|
|
YoudaoEmbed._client = qanthing(
|
|
model_name_or_path=model_name.replace(
|
|
"maidalun1020", "InfiniFlow"))
|
|
|
|
def encode(self, texts: list, batch_size=10):
|
|
res = []
|
|
token_count = 0
|
|
for t in texts:
|
|
token_count += num_tokens_from_string(t)
|
|
for i in range(0, len(texts), batch_size):
|
|
embds = YoudaoEmbed._client.encode(texts[i:i + batch_size])
|
|
res.extend(embds)
|
|
return np.array(res), token_count
|
|
|
|
def encode_queries(self, text):
|
|
embds = YoudaoEmbed._client.encode([text])
|
|
return np.array(embds[0]), num_tokens_from_string(text)
|
|
|
|
|
|
class JinaEmbed(Base):
|
|
def __init__(self, key, model_name="jina-embeddings-v2-base-zh",
|
|
base_url="https://api.jina.ai/v1/embeddings"):
|
|
|
|
self.base_url = "https://api.jina.ai/v1/embeddings"
|
|
self.headers = {
|
|
"Content-Type": "application/json",
|
|
"Authorization": f"Bearer {key}"
|
|
}
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list, batch_size=None):
|
|
texts = [truncate(t, 8196) for t in texts]
|
|
data = {
|
|
"model": self.model_name,
|
|
"input": texts,
|
|
'encoding_type': 'float'
|
|
}
|
|
res = requests.post(self.base_url, headers=self.headers, json=data).json()
|
|
return np.array([d["embedding"] for d in res["data"]]), res["usage"]["total_tokens"]
|
|
|
|
def encode_queries(self, text):
|
|
embds, cnt = self.encode([text])
|
|
return np.array(embds[0]), cnt
|
|
|
|
|
|
class InfinityEmbed(Base):
|
|
_model = None
|
|
|
|
def __init__(
|
|
self,
|
|
model_names: list[str] = ("BAAI/bge-small-en-v1.5",),
|
|
engine_kwargs: dict = {},
|
|
key = None,
|
|
):
|
|
|
|
from infinity_emb import EngineArgs
|
|
from infinity_emb.engine import AsyncEngineArray
|
|
|
|
self._default_model = model_names[0]
|
|
self.engine_array = AsyncEngineArray.from_args([EngineArgs(model_name_or_path = model_name, **engine_kwargs) for model_name in model_names])
|
|
|
|
async def _embed(self, sentences: list[str], model_name: str = ""):
|
|
if not model_name:
|
|
model_name = self._default_model
|
|
engine = self.engine_array[model_name]
|
|
was_already_running = engine.is_running
|
|
if not was_already_running:
|
|
await engine.astart()
|
|
embeddings, usage = await engine.embed(sentences=sentences)
|
|
if not was_already_running:
|
|
await engine.astop()
|
|
return embeddings, usage
|
|
|
|
def encode(self, texts: list[str], model_name: str = "") -> tuple[np.ndarray, int]:
|
|
# Using the internal tokenizer to encode the texts and get the total
|
|
# number of tokens
|
|
embeddings, usage = asyncio.run(self._embed(texts, model_name))
|
|
return np.array(embeddings), usage
|
|
|
|
def encode_queries(self, text: str) -> tuple[np.ndarray, int]:
|
|
# Using the internal tokenizer to encode the texts and get the total
|
|
# number of tokens
|
|
return self.encode([text])
|
|
|
|
|
|
class MistralEmbed(Base):
|
|
def __init__(self, key, model_name="mistral-embed",
|
|
base_url=None):
|
|
from mistralai.client import MistralClient
|
|
self.client = MistralClient(api_key=key)
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list, batch_size=32):
|
|
texts = [truncate(t, 8196) for t in texts]
|
|
res = self.client.embeddings(input=texts,
|
|
model=self.model_name)
|
|
return np.array([d.embedding for d in res.data]
|
|
), res.usage.total_tokens
|
|
|
|
def encode_queries(self, text):
|
|
res = self.client.embeddings(input=[truncate(text, 8196)],
|
|
model=self.model_name)
|
|
return np.array(res.data[0].embedding), res.usage.total_tokens
|
|
|
|
|
|
class BedrockEmbed(Base):
|
|
def __init__(self, key, model_name,
|
|
**kwargs):
|
|
import boto3
|
|
self.bedrock_ak = json.loads(key).get('bedrock_ak', '')
|
|
self.bedrock_sk = json.loads(key).get('bedrock_sk', '')
|
|
self.bedrock_region = json.loads(key).get('bedrock_region', '')
|
|
self.model_name = model_name
|
|
self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
|
|
aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
|
|
|
|
def encode(self, texts: list, batch_size=32):
|
|
texts = [truncate(t, 8196) for t in texts]
|
|
embeddings = []
|
|
token_count = 0
|
|
for text in texts:
|
|
if self.model_name.split('.')[0] == 'amazon':
|
|
body = {"inputText": text}
|
|
elif self.model_name.split('.')[0] == 'cohere':
|
|
body = {"texts": [text], "input_type": 'search_document'}
|
|
|
|
response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
|
|
model_response = json.loads(response["body"].read())
|
|
embeddings.extend([model_response["embedding"]])
|
|
token_count += num_tokens_from_string(text)
|
|
|
|
return np.array(embeddings), token_count
|
|
|
|
def encode_queries(self, text):
|
|
|
|
embeddings = []
|
|
token_count = num_tokens_from_string(text)
|
|
if self.model_name.split('.')[0] == 'amazon':
|
|
body = {"inputText": truncate(text, 8196)}
|
|
elif self.model_name.split('.')[0] == 'cohere':
|
|
body = {"texts": [truncate(text, 8196)], "input_type": 'search_query'}
|
|
|
|
response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
|
|
model_response = json.loads(response["body"].read())
|
|
embeddings.extend(model_response["embedding"])
|
|
|
|
return np.array(embeddings), token_count
|
|
|
|
class GeminiEmbed(Base):
|
|
def __init__(self, key, model_name='models/text-embedding-004',
|
|
**kwargs):
|
|
genai.configure(api_key=key)
|
|
self.model_name = 'models/' + model_name
|
|
|
|
def encode(self, texts: list, batch_size=32):
|
|
texts = [truncate(t, 2048) for t in texts]
|
|
token_count = sum(num_tokens_from_string(text) for text in texts)
|
|
result = genai.embed_content(
|
|
model=self.model_name,
|
|
content=texts,
|
|
task_type="retrieval_document",
|
|
title="Embedding of list of strings")
|
|
return np.array(result['embedding']),token_count
|
|
|
|
def encode_queries(self, text):
|
|
result = genai.embed_content(
|
|
model=self.model_name,
|
|
content=truncate(text,2048),
|
|
task_type="retrieval_document",
|
|
title="Embedding of single string")
|
|
token_count = num_tokens_from_string(text)
|
|
return np.array(result['embedding']),token_count
|
|
|
|
class NvidiaEmbed(Base):
|
|
def __init__(
|
|
self, key, model_name, base_url="https://integrate.api.nvidia.com/v1/embeddings"
|
|
):
|
|
if not base_url:
|
|
base_url = "https://integrate.api.nvidia.com/v1/embeddings"
|
|
self.api_key = key
|
|
self.base_url = base_url
|
|
self.headers = {
|
|
"accept": "application/json",
|
|
"Content-Type": "application/json",
|
|
"authorization": f"Bearer {self.api_key}",
|
|
}
|
|
self.model_name = model_name
|
|
if model_name == "nvidia/embed-qa-4":
|
|
self.base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings"
|
|
self.model_name = "NV-Embed-QA"
|
|
if model_name == "snowflake/arctic-embed-l":
|
|
self.base_url = "https://ai.api.nvidia.com/v1/retrieval/snowflake/arctic-embed-l/embeddings"
|
|
|
|
def encode(self, texts: list, batch_size=None):
|
|
payload = {
|
|
"input": texts,
|
|
"input_type": "query",
|
|
"model": self.model_name,
|
|
"encoding_format": "float",
|
|
"truncate": "END",
|
|
}
|
|
res = requests.post(self.base_url, headers=self.headers, json=payload).json()
|
|
return (
|
|
np.array([d["embedding"] for d in res["data"]]),
|
|
res["usage"]["total_tokens"],
|
|
)
|
|
|
|
def encode_queries(self, text):
|
|
embds, cnt = self.encode([text])
|
|
return np.array(embds[0]), cnt
|
|
|
|
|
|
class LmStudioEmbed(LocalAIEmbed):
|
|
def __init__(self, key, model_name, base_url):
|
|
if not base_url:
|
|
raise ValueError("Local llm url cannot be None")
|
|
if base_url.split("/")[-1] != "v1":
|
|
base_url = os.path.join(base_url, "v1")
|
|
self.client = OpenAI(api_key="lm-studio", base_url=base_url)
|
|
self.model_name = model_name
|
|
|
|
|
|
class OpenAI_APIEmbed(OpenAIEmbed):
|
|
def __init__(self, key, model_name, base_url):
|
|
if not base_url:
|
|
raise ValueError("url cannot be None")
|
|
if base_url.split("/")[-1] != "v1":
|
|
base_url = os.path.join(base_url, "v1")
|
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
|
self.model_name = model_name.split("___")[0]
|
|
|
|
|
|
class CoHereEmbed(Base):
|
|
def __init__(self, key, model_name, base_url=None):
|
|
from cohere import Client
|
|
|
|
self.client = Client(api_key=key)
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list, batch_size=32):
|
|
res = self.client.embed(
|
|
texts=texts,
|
|
model=self.model_name,
|
|
input_type="search_query",
|
|
embedding_types=["float"],
|
|
)
|
|
return np.array([d for d in res.embeddings.float]), int(
|
|
res.meta.billed_units.input_tokens
|
|
)
|
|
|
|
def encode_queries(self, text):
|
|
res = self.client.embed(
|
|
texts=[text],
|
|
model=self.model_name,
|
|
input_type="search_query",
|
|
embedding_types=["float"],
|
|
)
|
|
return np.array(res.embeddings.float[0]), int(
|
|
res.meta.billed_units.input_tokens
|
|
)
|
|
|
|
|
|
class TogetherAIEmbed(OllamaEmbed):
|
|
def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"):
|
|
if not base_url:
|
|
base_url = "https://api.together.xyz/v1"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class PerfXCloudEmbed(OpenAIEmbed):
|
|
def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"):
|
|
if not base_url:
|
|
base_url = "https://cloud.perfxlab.cn/v1"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class UpstageEmbed(OpenAIEmbed):
|
|
def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"):
|
|
if not base_url:
|
|
base_url = "https://api.upstage.ai/v1/solar"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class SILICONFLOWEmbed(Base):
|
|
def __init__(
|
|
self, key, model_name, base_url="https://api.siliconflow.cn/v1/embeddings"
|
|
):
|
|
if not base_url:
|
|
base_url = "https://api.siliconflow.cn/v1/embeddings"
|
|
self.headers = {
|
|
"accept": "application/json",
|
|
"content-type": "application/json",
|
|
"authorization": f"Bearer {key}",
|
|
}
|
|
self.base_url = base_url
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list, batch_size=32):
|
|
payload = {
|
|
"model": self.model_name,
|
|
"input": texts,
|
|
"encoding_format": "float",
|
|
}
|
|
res = requests.post(self.base_url, json=payload, headers=self.headers).json()
|
|
return (
|
|
np.array([d["embedding"] for d in res["data"]]),
|
|
res["usage"]["total_tokens"],
|
|
)
|
|
|
|
def encode_queries(self, text):
|
|
payload = {
|
|
"model": self.model_name,
|
|
"input": text,
|
|
"encoding_format": "float",
|
|
}
|
|
res = requests.post(self.base_url, json=payload, headers=self.headers).json()
|
|
return np.array(res["data"][0]["embedding"]), res["usage"]["total_tokens"]
|
|
|
|
|
|
class ReplicateEmbed(Base):
|
|
def __init__(self, key, model_name, base_url=None):
|
|
from replicate.client import Client
|
|
|
|
self.model_name = model_name
|
|
self.client = Client(api_token=key)
|
|
|
|
def encode(self, texts: list, batch_size=32):
|
|
res = self.client.run(self.model_name, input={"texts": json.dumps(texts)})
|
|
return np.array(res), sum([num_tokens_from_string(text) for text in texts])
|
|
|
|
def encode_queries(self, text):
|
|
res = self.client.embed(self.model_name, input={"texts": [text]})
|
|
return np.array(res), num_tokens_from_string(text)
|
|
|
|
|
|
class BaiduYiyanEmbed(Base):
|
|
def __init__(self, key, model_name, base_url=None):
|
|
import qianfan
|
|
|
|
key = json.loads(key)
|
|
ak = key.get("yiyan_ak", "")
|
|
sk = key.get("yiyan_sk", "")
|
|
self.client = qianfan.Embedding(ak=ak, sk=sk)
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list, batch_size=32):
|
|
res = self.client.do(model=self.model_name, texts=texts).body
|
|
return (
|
|
np.array([r["embedding"] for r in res["data"]]),
|
|
res["usage"]["total_tokens"],
|
|
)
|
|
|
|
def encode_queries(self, text):
|
|
res = self.client.do(model=self.model_name, texts=[text]).body
|
|
return (
|
|
np.array([r["embedding"] for r in res["data"]]),
|
|
res["usage"]["total_tokens"],
|
|
)
|
|
|
|
|
|
class VoyageEmbed(Base):
|
|
def __init__(self, key, model_name, base_url=None):
|
|
import voyageai
|
|
|
|
self.client = voyageai.Client(api_key=key)
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list, batch_size=32):
|
|
res = self.client.embed(
|
|
texts=texts, model=self.model_name, input_type="document"
|
|
)
|
|
return np.array(res.embeddings), res.total_tokens
|
|
|
|
def encode_queries(self, text):
|
|
res = self.client.embed
|
|
res = self.client.embed(
|
|
texts=text, model=self.model_name, input_type="query"
|
|
)
|
|
return np.array(res.embeddings), res.total_tokens
|
|
|
|
|
|
class HuggingFaceEmbed(Base):
|
|
def __init__(self, key, model_name, base_url=None):
|
|
if not model_name:
|
|
raise ValueError("Model name cannot be None")
|
|
self.key = key
|
|
self.model_name = model_name
|
|
self.base_url = base_url or "http://127.0.0.1:8080"
|
|
|
|
def encode(self, texts: list, batch_size=32):
|
|
embeddings = []
|
|
for text in texts:
|
|
response = requests.post(
|
|
f"{self.base_url}/embed",
|
|
json={"inputs": text},
|
|
headers={'Content-Type': 'application/json'}
|
|
)
|
|
if response.status_code == 200:
|
|
embedding = response.json()
|
|
embeddings.append(embedding[0])
|
|
else:
|
|
raise Exception(f"Error: {response.status_code} - {response.text}")
|
|
return np.array(embeddings), sum([num_tokens_from_string(text) for text in texts])
|
|
|
|
def encode_queries(self, text):
|
|
response = requests.post(
|
|
f"{self.base_url}/embed",
|
|
json={"inputs": text},
|
|
headers={'Content-Type': 'application/json'}
|
|
)
|
|
if response.status_code == 200:
|
|
embedding = response.json()
|
|
return np.array(embedding[0]), num_tokens_from_string(text)
|
|
else:
|
|
raise Exception(f"Error: {response.status_code} - {response.text}")
|
|
|