ragflow/api/db/init_data.py
2024-02-27 14:57:34 +08:00

222 lines
7.7 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import time
import uuid
from api.db import LLMType, UserTenantRole
from api.db.db_models import init_database_tables as init_web_db
from api.db.services import UserService
from api.db.services.llm_service import LLMFactoriesService, LLMService, TenantLLMService, LLMBundle
from api.db.services.user_service import TenantService, UserTenantService
from api.settings import CHAT_MDL, EMBEDDING_MDL, ASR_MDL, IMAGE2TEXT_MDL, PARSERS, LLM_FACTORY, API_KEY
def init_superuser():
user_info = {
"id": uuid.uuid1().hex,
"password": "admin",
"nickname": "admin",
"is_superuser": True,
"email": "kai.hu@infiniflow.org",
"creator": "system",
"status": "1",
}
tenant = {
"id": user_info["id"],
"name": user_info["nickname"] + "s Kingdom",
"llm_id": CHAT_MDL,
"embd_id": EMBEDDING_MDL,
"asr_id": ASR_MDL,
"parser_ids": PARSERS,
"img2txt_id": IMAGE2TEXT_MDL
}
usr_tenant = {
"tenant_id": user_info["id"],
"user_id": user_info["id"],
"invited_by": user_info["id"],
"role": UserTenantRole.OWNER
}
tenant_llm = []
for llm in LLMService.query(fid=LLM_FACTORY):
tenant_llm.append(
{"tenant_id": user_info["id"], "llm_factory": LLM_FACTORY, "llm_name": llm.llm_name, "model_type": llm.model_type,
"api_key": API_KEY})
if not UserService.save(**user_info):
print("【ERROR】can't init admin.")
return
TenantService.save(**tenant)
UserTenantService.save(**usr_tenant)
TenantLLMService.insert_many(tenant_llm)
UserService.save(**user_info)
chat_mdl = LLMBundle(tenant["id"], LLMType.CHAT, tenant["llm_id"])
msg = chat_mdl.chat(system="", history=[{"role": "user", "content": "Hello!"}], gen_conf={})
if msg.find("ERROR: ") == 0:
print("【ERROR】: '{}' dosen't work. {}".format(tenant["llm_id"]), msg)
embd_mdl = LLMBundle(tenant["id"], LLMType.CHAT, tenant["embd_id"])
v,c = embd_mdl.encode(["Hello!"])
if c == 0:
print("【ERROR】: '{}' dosen't work...".format(tenant["embd_id"]))
def init_llm_factory():
factory_infos = [{
"name": "OpenAI",
"logo": "",
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
"status": "1",
},{
"name": "通义千问",
"logo": "",
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
"status": "1",
},{
"name": "智普AI",
"logo": "",
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
"status": "1",
},{
"name": "文心一言",
"logo": "",
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
"status": "1",
},
]
llm_infos = [
# ---------------------- OpenAI ------------------------
{
"fid": factory_infos[0]["name"],
"llm_name": "gpt-3.5-turbo",
"tags": "LLM,CHAT,4K",
"max_tokens": 4096,
"model_type": LLMType.CHAT.value
},{
"fid": factory_infos[0]["name"],
"llm_name": "gpt-3.5-turbo-16k-0613",
"tags": "LLM,CHAT,16k",
"max_tokens": 16385,
"model_type": LLMType.CHAT.value
},{
"fid": factory_infos[0]["name"],
"llm_name": "text-embedding-ada-002",
"tags": "TEXT EMBEDDING,8K",
"max_tokens": 8191,
"model_type": LLMType.EMBEDDING.value
},{
"fid": factory_infos[0]["name"],
"llm_name": "whisper-1",
"tags": "SPEECH2TEXT",
"max_tokens": 25*1024*1024,
"model_type": LLMType.SPEECH2TEXT.value
},{
"fid": factory_infos[0]["name"],
"llm_name": "gpt-4",
"tags": "LLM,CHAT,8K",
"max_tokens": 8191,
"model_type": LLMType.CHAT.value
},{
"fid": factory_infos[0]["name"],
"llm_name": "gpt-4-32k",
"tags": "LLM,CHAT,32K",
"max_tokens": 32768,
"model_type": LLMType.CHAT.value
},{
"fid": factory_infos[0]["name"],
"llm_name": "gpt-4-vision-preview",
"tags": "LLM,CHAT,IMAGE2TEXT",
"max_tokens": 765,
"model_type": LLMType.IMAGE2TEXT.value
},
# ----------------------- Qwen -----------------------
{
"fid": factory_infos[1]["name"],
"llm_name": "qwen-turbo",
"tags": "LLM,CHAT,8K",
"max_tokens": 8191,
"model_type": LLMType.CHAT.value
},{
"fid": factory_infos[1]["name"],
"llm_name": "qwen-plus",
"tags": "LLM,CHAT,32K",
"max_tokens": 32768,
"model_type": LLMType.CHAT.value
},{
"fid": factory_infos[1]["name"],
"llm_name": "text-embedding-v2",
"tags": "TEXT EMBEDDING,2K",
"max_tokens": 2048,
"model_type": LLMType.EMBEDDING.value
},{
"fid": factory_infos[1]["name"],
"llm_name": "paraformer-realtime-8k-v1",
"tags": "SPEECH2TEXT",
"max_tokens": 25*1024*1024,
"model_type": LLMType.SPEECH2TEXT.value
},{
"fid": factory_infos[1]["name"],
"llm_name": "qwen-vl-max",
"tags": "LLM,CHAT,IMAGE2TEXT",
"max_tokens": 765,
"model_type": LLMType.IMAGE2TEXT.value
},
# ---------------------- ZhipuAI ----------------------
{
"fid": factory_infos[2]["name"],
"llm_name": "glm-3-turbo",
"tags": "LLM,CHAT,",
"max_tokens": 128 * 1000,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[2]["name"],
"llm_name": "glm-4",
"tags": "LLM,CHAT,",
"max_tokens": 128 * 1000,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[2]["name"],
"llm_name": "glm-4v",
"tags": "LLM,CHAT,IMAGE2TEXT",
"max_tokens": 2000,
"model_type": LLMType.IMAGE2TEXT.value
},
{
"fid": factory_infos[2]["name"],
"llm_name": "embedding-2",
"tags": "TEXT EMBEDDING",
"max_tokens": 512,
"model_type": LLMType.SPEECH2TEXT.value
},
]
for info in factory_infos:
LLMFactoriesService.save(**info)
for info in llm_infos:
LLMService.save(**info)
def init_web_data():
start_time = time.time()
if not LLMService.get_all().count():init_llm_factory()
if not UserService.get_all().count():
init_superuser()
print("init web data success:{}".format(time.time() - start_time))
if __name__ == '__main__':
init_web_db()
init_web_data()