mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-23 22:50:17 +08:00

### What problem does this PR solve? #6177 ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue)
338 lines
14 KiB
Python
338 lines
14 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import json
|
|
import logging
|
|
from collections import defaultdict
|
|
from copy import deepcopy
|
|
import json_repair
|
|
import pandas as pd
|
|
import trio
|
|
|
|
from api.utils import get_uuid
|
|
from graphrag.query_analyze_prompt import PROMPTS
|
|
from graphrag.utils import get_entity_type2sampels, get_llm_cache, set_llm_cache, get_relation
|
|
from rag.utils import num_tokens_from_string, get_float
|
|
from rag.utils.doc_store_conn import OrderByExpr
|
|
|
|
from rag.nlp.search import Dealer, index_name
|
|
|
|
|
|
class KGSearch(Dealer):
|
|
def _chat(self, llm_bdl, system, history, gen_conf):
|
|
response = get_llm_cache(llm_bdl.llm_name, system, history, gen_conf)
|
|
if response:
|
|
return response
|
|
response = llm_bdl.chat(system, history, gen_conf)
|
|
if response.find("**ERROR**") >= 0:
|
|
raise Exception(response)
|
|
set_llm_cache(llm_bdl.llm_name, system, response, history, gen_conf)
|
|
return response
|
|
|
|
def query_rewrite(self, llm, question, idxnms, kb_ids):
|
|
ty2ents = trio.run(lambda: get_entity_type2sampels(idxnms, kb_ids))
|
|
hint_prompt = PROMPTS["minirag_query2kwd"].format(query=question,
|
|
TYPE_POOL=json.dumps(ty2ents, ensure_ascii=False, indent=2))
|
|
result = self._chat(llm, hint_prompt, [{"role": "user", "content": "Output:"}], {"temperature": .5})
|
|
try:
|
|
keywords_data = json_repair.loads(result)
|
|
type_keywords = keywords_data.get("answer_type_keywords", [])
|
|
entities_from_query = keywords_data.get("entities_from_query", [])[:5]
|
|
return type_keywords, entities_from_query
|
|
except json_repair.JSONDecodeError:
|
|
try:
|
|
result = result.replace(hint_prompt[:-1], '').replace('user', '').replace('model', '').strip()
|
|
result = '{' + result.split('{')[1].split('}')[0] + '}'
|
|
keywords_data = json_repair.loads(result)
|
|
type_keywords = keywords_data.get("answer_type_keywords", [])
|
|
entities_from_query = keywords_data.get("entities_from_query", [])[:5]
|
|
return type_keywords, entities_from_query
|
|
# Handle parsing error
|
|
except Exception as e:
|
|
logging.exception(f"JSON parsing error: {result} -> {e}")
|
|
raise e
|
|
|
|
def _ent_info_from_(self, es_res, sim_thr=0.3):
|
|
res = {}
|
|
flds = ["content_with_weight", "_score", "entity_kwd", "rank_flt", "n_hop_with_weight"]
|
|
es_res = self.dataStore.getFields(es_res, flds)
|
|
for _, ent in es_res.items():
|
|
for f in flds:
|
|
if f in ent and ent[f] is None:
|
|
del ent[f]
|
|
if get_float(ent.get("_score", 0)) < sim_thr:
|
|
continue
|
|
if isinstance(ent["entity_kwd"], list):
|
|
ent["entity_kwd"] = ent["entity_kwd"][0]
|
|
res[ent["entity_kwd"]] = {
|
|
"sim": get_float(ent.get("_score", 0)),
|
|
"pagerank": get_float(ent.get("rank_flt", 0)),
|
|
"n_hop_ents": json.loads(ent.get("n_hop_with_weight", "[]")),
|
|
"description": ent.get("content_with_weight", "{}")
|
|
}
|
|
return res
|
|
|
|
def _relation_info_from_(self, es_res, sim_thr=0.3):
|
|
res = {}
|
|
es_res = self.dataStore.getFields(es_res, ["content_with_weight", "_score", "from_entity_kwd", "to_entity_kwd",
|
|
"weight_int"])
|
|
for _, ent in es_res.items():
|
|
if get_float(ent["_score"]) < sim_thr:
|
|
continue
|
|
f, t = sorted([ent["from_entity_kwd"], ent["to_entity_kwd"]])
|
|
if isinstance(f, list):
|
|
f = f[0]
|
|
if isinstance(t, list):
|
|
t = t[0]
|
|
res[(f, t)] = {
|
|
"sim": get_float(ent["_score"]),
|
|
"pagerank": get_float(ent.get("weight_int", 0)),
|
|
"description": ent["content_with_weight"]
|
|
}
|
|
return res
|
|
|
|
def get_relevant_ents_by_keywords(self, keywords, filters, idxnms, kb_ids, emb_mdl, sim_thr=0.3, N=56):
|
|
if not keywords:
|
|
return {}
|
|
filters = deepcopy(filters)
|
|
filters["knowledge_graph_kwd"] = "entity"
|
|
matchDense = self.get_vector(", ".join(keywords), emb_mdl, 1024, sim_thr)
|
|
es_res = self.dataStore.search(["content_with_weight", "entity_kwd", "rank_flt"], [], filters, [matchDense],
|
|
OrderByExpr(), 0, N,
|
|
idxnms, kb_ids)
|
|
return self._ent_info_from_(es_res, sim_thr)
|
|
|
|
def get_relevant_relations_by_txt(self, txt, filters, idxnms, kb_ids, emb_mdl, sim_thr=0.3, N=56):
|
|
if not txt:
|
|
return {}
|
|
filters = deepcopy(filters)
|
|
filters["knowledge_graph_kwd"] = "relation"
|
|
matchDense = self.get_vector(txt, emb_mdl, 1024, sim_thr)
|
|
es_res = self.dataStore.search(
|
|
["content_with_weight", "_score", "from_entity_kwd", "to_entity_kwd", "weight_int"],
|
|
[], filters, [matchDense], OrderByExpr(), 0, N, idxnms, kb_ids)
|
|
return self._relation_info_from_(es_res, sim_thr)
|
|
|
|
def get_relevant_ents_by_types(self, types, filters, idxnms, kb_ids, N=56):
|
|
if not types:
|
|
return {}
|
|
filters = deepcopy(filters)
|
|
filters["knowledge_graph_kwd"] = "entity"
|
|
filters["entity_type_kwd"] = types
|
|
ordr = OrderByExpr()
|
|
ordr.desc("rank_flt")
|
|
es_res = self.dataStore.search(["entity_kwd", "rank_flt"], [], filters, [], ordr, 0, N,
|
|
idxnms, kb_ids)
|
|
return self._ent_info_from_(es_res, 0)
|
|
|
|
def retrieval(self, question: str,
|
|
tenant_ids: str | list[str],
|
|
kb_ids: list[str],
|
|
emb_mdl,
|
|
llm,
|
|
max_token: int = 8196,
|
|
ent_topn: int = 6,
|
|
rel_topn: int = 6,
|
|
comm_topn: int = 1,
|
|
ent_sim_threshold: float = 0.3,
|
|
rel_sim_threshold: float = 0.3,
|
|
):
|
|
qst = question
|
|
filters = self.get_filters({"kb_ids": kb_ids})
|
|
if isinstance(tenant_ids, str):
|
|
tenant_ids = tenant_ids.split(",")
|
|
idxnms = [index_name(tid) for tid in tenant_ids]
|
|
ty_kwds = []
|
|
try:
|
|
ty_kwds, ents = self.query_rewrite(llm, qst, [index_name(tid) for tid in tenant_ids], kb_ids)
|
|
logging.info(f"Q: {qst}, Types: {ty_kwds}, Entities: {ents}")
|
|
except Exception as e:
|
|
logging.exception(e)
|
|
ents = [qst]
|
|
pass
|
|
|
|
ents_from_query = self.get_relevant_ents_by_keywords(ents, filters, idxnms, kb_ids, emb_mdl, ent_sim_threshold)
|
|
ents_from_types = self.get_relevant_ents_by_types(ty_kwds, filters, idxnms, kb_ids, 10000)
|
|
rels_from_txt = self.get_relevant_relations_by_txt(qst, filters, idxnms, kb_ids, emb_mdl, rel_sim_threshold)
|
|
nhop_pathes = defaultdict(dict)
|
|
for _, ent in ents_from_query.items():
|
|
nhops = ent.get("n_hop_ents", [])
|
|
if not isinstance(nhops, list):
|
|
logging.warning(f"Abnormal n_hop_ents: {nhops}")
|
|
continue
|
|
for nbr in nhops:
|
|
path = nbr["path"]
|
|
wts = nbr["weights"]
|
|
for i in range(len(path) - 1):
|
|
f, t = path[i], path[i + 1]
|
|
if (f, t) in nhop_pathes:
|
|
nhop_pathes[(f, t)]["sim"] += ent["sim"] / (2 + i)
|
|
else:
|
|
nhop_pathes[(f, t)]["sim"] = ent["sim"] / (2 + i)
|
|
nhop_pathes[(f, t)]["pagerank"] = wts[i]
|
|
|
|
logging.info("Retrieved entities: {}".format(list(ents_from_query.keys())))
|
|
logging.info("Retrieved relations: {}".format(list(rels_from_txt.keys())))
|
|
logging.info("Retrieved entities from types({}): {}".format(ty_kwds, list(ents_from_types.keys())))
|
|
logging.info("Retrieved N-hops: {}".format(list(nhop_pathes.keys())))
|
|
|
|
# P(E|Q) => P(E) * P(Q|E) => pagerank * sim
|
|
for ent in ents_from_types.keys():
|
|
if ent not in ents_from_query:
|
|
continue
|
|
ents_from_query[ent]["sim"] *= 2
|
|
|
|
for (f, t) in rels_from_txt.keys():
|
|
pair = tuple(sorted([f, t]))
|
|
s = 0
|
|
if pair in nhop_pathes:
|
|
s += nhop_pathes[pair]["sim"]
|
|
del nhop_pathes[pair]
|
|
if f in ents_from_types:
|
|
s += 1
|
|
if t in ents_from_types:
|
|
s += 1
|
|
rels_from_txt[(f, t)]["sim"] *= s + 1
|
|
|
|
# This is for the relations from n-hop but not by query search
|
|
for (f, t) in nhop_pathes.keys():
|
|
s = 0
|
|
if f in ents_from_types:
|
|
s += 1
|
|
if t in ents_from_types:
|
|
s += 1
|
|
rels_from_txt[(f, t)] = {
|
|
"sim": nhop_pathes[(f, t)]["sim"] * (s + 1),
|
|
"pagerank": nhop_pathes[(f, t)]["pagerank"]
|
|
}
|
|
|
|
ents_from_query = sorted(ents_from_query.items(), key=lambda x: x[1]["sim"] * x[1]["pagerank"], reverse=True)[
|
|
:ent_topn]
|
|
rels_from_txt = sorted(rels_from_txt.items(), key=lambda x: x[1]["sim"] * x[1]["pagerank"], reverse=True)[
|
|
:rel_topn]
|
|
|
|
ents = []
|
|
relas = []
|
|
for n, ent in ents_from_query:
|
|
ents.append({
|
|
"Entity": n,
|
|
"Score": "%.2f" % (ent["sim"] * ent["pagerank"]),
|
|
"Description": json.loads(ent["description"]).get("description", "") if ent["description"] else ""
|
|
})
|
|
max_token -= num_tokens_from_string(str(ents[-1]))
|
|
if max_token <= 0:
|
|
ents = ents[:-1]
|
|
break
|
|
|
|
for (f, t), rel in rels_from_txt:
|
|
if not rel.get("description"):
|
|
for tid in tenant_ids:
|
|
rela = get_relation(tid, kb_ids, f, t)
|
|
if rela:
|
|
break
|
|
else:
|
|
continue
|
|
rel["description"] = rela["description"]
|
|
desc = rel["description"]
|
|
try:
|
|
desc = json.loads(desc).get("description", "")
|
|
except Exception:
|
|
pass
|
|
relas.append({
|
|
"From Entity": f,
|
|
"To Entity": t,
|
|
"Score": "%.2f" % (rel["sim"] * rel["pagerank"]),
|
|
"Description": desc
|
|
})
|
|
max_token -= num_tokens_from_string(str(relas[-1]))
|
|
if max_token <= 0:
|
|
relas = relas[:-1]
|
|
break
|
|
|
|
if ents:
|
|
ents = "\n---- Entities ----\n{}".format(pd.DataFrame(ents).to_csv())
|
|
else:
|
|
ents = ""
|
|
if relas:
|
|
relas = "\n---- Relations ----\n{}".format(pd.DataFrame(relas).to_csv())
|
|
else:
|
|
relas = ""
|
|
|
|
return {
|
|
"chunk_id": get_uuid(),
|
|
"content_ltks": "",
|
|
"content_with_weight": ents + relas + self._community_retrival_([n for n, _ in ents_from_query], filters, kb_ids, idxnms,
|
|
comm_topn, max_token),
|
|
"doc_id": "",
|
|
"docnm_kwd": "Related content in Knowledge Graph",
|
|
"kb_id": kb_ids,
|
|
"important_kwd": [],
|
|
"image_id": "",
|
|
"similarity": 1.,
|
|
"vector_similarity": 1.,
|
|
"term_similarity": 0,
|
|
"vector": [],
|
|
"positions": [],
|
|
}
|
|
|
|
def _community_retrival_(self, entities, condition, kb_ids, idxnms, topn, max_token):
|
|
## Community retrieval
|
|
fields = ["docnm_kwd", "content_with_weight"]
|
|
odr = OrderByExpr()
|
|
odr.desc("weight_flt")
|
|
fltr = deepcopy(condition)
|
|
fltr["knowledge_graph_kwd"] = "community_report"
|
|
fltr["entities_kwd"] = entities
|
|
comm_res = self.dataStore.search(fields, [], fltr, [],
|
|
OrderByExpr(), 0, topn, idxnms, kb_ids)
|
|
comm_res_fields = self.dataStore.getFields(comm_res, fields)
|
|
txts = []
|
|
for ii, (_, row) in enumerate(comm_res_fields.items()):
|
|
obj = json.loads(row["content_with_weight"])
|
|
txts.append("# {}. {}\n## Content\n{}\n## Evidences\n{}\n".format(
|
|
ii + 1, row["docnm_kwd"], obj["report"], obj["evidences"]))
|
|
max_token -= num_tokens_from_string(str(txts[-1]))
|
|
|
|
if not txts:
|
|
return ""
|
|
return "\n---- Community Report ----\n" + "\n".join(txts)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from api import settings
|
|
import argparse
|
|
from api.db import LLMType
|
|
from api.db.services.knowledgebase_service import KnowledgebaseService
|
|
from api.db.services.llm_service import LLMBundle
|
|
from api.db.services.user_service import TenantService
|
|
from rag.nlp import search
|
|
|
|
settings.init_settings()
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-t', '--tenant_id', default=False, help="Tenant ID", action='store', required=True)
|
|
parser.add_argument('-d', '--kb_id', default=False, help="Knowledge base ID", action='store', required=True)
|
|
parser.add_argument('-q', '--question', default=False, help="Question", action='store', required=True)
|
|
args = parser.parse_args()
|
|
|
|
kb_id = args.kb_id
|
|
_, tenant = TenantService.get_by_id(args.tenant_id)
|
|
llm_bdl = LLMBundle(args.tenant_id, LLMType.CHAT, tenant.llm_id)
|
|
_, kb = KnowledgebaseService.get_by_id(kb_id)
|
|
embed_bdl = LLMBundle(args.tenant_id, LLMType.EMBEDDING, kb.embd_id)
|
|
|
|
kg = KGSearch(settings.docStoreConn)
|
|
print(kg.retrieval({"question": args.question, "kb_ids": [kb_id]},
|
|
search.index_name(kb.tenant_id), [kb_id], embed_bdl, llm_bdl))
|