mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-22 22:20:07 +08:00
221 lines
8.0 KiB
Python
221 lines
8.0 KiB
Python
#
|
||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
#
|
||
|
||
import logging
|
||
import json
|
||
import re
|
||
from rag.utils.doc_store_conn import MatchTextExpr
|
||
|
||
from rag.nlp import rag_tokenizer, term_weight, synonym
|
||
|
||
|
||
class FulltextQueryer:
|
||
def __init__(self):
|
||
self.tw = term_weight.Dealer()
|
||
self.syn = synonym.Dealer()
|
||
self.query_fields = [
|
||
"title_tks^10",
|
||
"title_sm_tks^5",
|
||
"important_kwd^30",
|
||
"important_tks^20",
|
||
"content_ltks^2",
|
||
"content_sm_ltks",
|
||
]
|
||
|
||
@staticmethod
|
||
def subSpecialChar(line):
|
||
return re.sub(r"([:\{\}/\[\]\-\*\"\(\)\|\+~\^])", r"\\\1", line).strip()
|
||
|
||
@staticmethod
|
||
def isChinese(line):
|
||
arr = re.split(r"[ \t]+", line)
|
||
if len(arr) <= 3:
|
||
return True
|
||
e = 0
|
||
for t in arr:
|
||
if not re.match(r"[a-zA-Z]+$", t):
|
||
e += 1
|
||
return e * 1.0 / len(arr) >= 0.7
|
||
|
||
@staticmethod
|
||
def rmWWW(txt):
|
||
patts = [
|
||
(
|
||
r"是*(什么样的|哪家|一下|那家|请问|啥样|咋样了|什么时候|何时|何地|何人|是否|是不是|多少|哪里|怎么|哪儿|怎么样|如何|哪些|是啥|啥是|啊|吗|呢|吧|咋|什么|有没有|呀)是*",
|
||
"",
|
||
),
|
||
(r"(^| )(what|who|how|which|where|why)('re|'s)? ", " "),
|
||
(r"(^| )('s|'re|is|are|were|was|do|does|did|don't|doesn't|didn't|has|have|be|there|you|me|your|my|mine|just|please|may|i|should|would|wouldn't|will|won't|done|go|for|with|so|the|a|an|by|i'm|it's|he's|she's|they|they're|you're|as|by|on|in|at|up|out|down|of) ", " ")
|
||
]
|
||
for r, p in patts:
|
||
txt = re.sub(r, p, txt, flags=re.IGNORECASE)
|
||
return txt
|
||
|
||
def question(self, txt, tbl="qa", min_match:float=0.6):
|
||
txt = re.sub(
|
||
r"[ :\r\n\t,,。??/`!!&\^%%()^\[\]]+",
|
||
" ",
|
||
rag_tokenizer.tradi2simp(rag_tokenizer.strQ2B(txt.lower())),
|
||
).strip()
|
||
txt = FulltextQueryer.rmWWW(txt)
|
||
|
||
if not self.isChinese(txt):
|
||
txt = FulltextQueryer.rmWWW(txt)
|
||
tks = rag_tokenizer.tokenize(txt).split(" ")
|
||
keywords = [t for t in tks if t]
|
||
tks_w = self.tw.weights(tks, preprocess=False)
|
||
tks_w = [(re.sub(r"[ \\\"'^]", "", tk), w) for tk, w in tks_w]
|
||
tks_w = [(re.sub(r"^[a-z0-9]$", "", tk), w) for tk, w in tks_w if tk]
|
||
tks_w = [(re.sub(r"^[\+-]", "", tk), w) for tk, w in tks_w if tk]
|
||
syns = []
|
||
for tk, w in tks_w:
|
||
syn = self.syn.lookup(tk)
|
||
syn = rag_tokenizer.tokenize(" ".join(syn)).split(" ")
|
||
keywords.extend(syn)
|
||
syn = ["\"{}\"^{:.4f}".format(s, w / 4.) for s in syn]
|
||
syns.append(" ".join(syn))
|
||
|
||
q = ["({}^{:.4f}".format(tk, w) + " {})".format(syn) for (tk, w), syn in zip(tks_w, syns) if tk]
|
||
for i in range(1, len(tks_w)):
|
||
q.append(
|
||
'"%s %s"^%.4f'
|
||
% (
|
||
tks_w[i - 1][0],
|
||
tks_w[i][0],
|
||
max(tks_w[i - 1][1], tks_w[i][1]) * 2,
|
||
)
|
||
)
|
||
if not q:
|
||
q.append(txt)
|
||
query = " ".join(q)
|
||
return MatchTextExpr(
|
||
self.query_fields, query, 100
|
||
), keywords
|
||
|
||
def need_fine_grained_tokenize(tk):
|
||
if len(tk) < 3:
|
||
return False
|
||
if re.match(r"[0-9a-z\.\+#_\*-]+$", tk):
|
||
return False
|
||
return True
|
||
|
||
txt = FulltextQueryer.rmWWW(txt)
|
||
qs, keywords = [], []
|
||
for tt in self.tw.split(txt)[:256]: # .split(" "):
|
||
if not tt:
|
||
continue
|
||
keywords.append(tt)
|
||
twts = self.tw.weights([tt])
|
||
syns = self.syn.lookup(tt)
|
||
if syns: keywords.extend(syns)
|
||
logging.debug(json.dumps(twts, ensure_ascii=False))
|
||
tms = []
|
||
for tk, w in sorted(twts, key=lambda x: x[1] * -1):
|
||
sm = (
|
||
rag_tokenizer.fine_grained_tokenize(tk).split(" ")
|
||
if need_fine_grained_tokenize(tk)
|
||
else []
|
||
)
|
||
sm = [
|
||
re.sub(
|
||
r"[ ,\./;'\[\]\\`~!@#$%\^&\*\(\)=\+_<>\?:\"\{\}\|,。;‘’【】、!¥……()——《》?:“”-]+",
|
||
"",
|
||
m,
|
||
)
|
||
for m in sm
|
||
]
|
||
sm = [FulltextQueryer.subSpecialChar(m) for m in sm if len(m) > 1]
|
||
sm = [m for m in sm if len(m) > 1]
|
||
|
||
keywords.append(re.sub(r"[ \\\"']+", "", tk))
|
||
keywords.extend(sm)
|
||
if len(keywords) >= 12:
|
||
break
|
||
|
||
tk_syns = self.syn.lookup(tk)
|
||
tk = FulltextQueryer.subSpecialChar(tk)
|
||
if tk.find(" ") > 0:
|
||
tk = '"%s"' % tk
|
||
if tk_syns:
|
||
tk = f"({tk} %s)" % " ".join(tk_syns)
|
||
if sm:
|
||
tk = f'{tk} OR "%s" OR ("%s"~2)^0.5' % (" ".join(sm), " ".join(sm))
|
||
if tk.strip():
|
||
tms.append((tk, w))
|
||
|
||
tms = " ".join([f"({t})^{w}" for t, w in tms])
|
||
|
||
if len(twts) > 1:
|
||
tms += ' ("%s"~4)^1.5' % (" ".join([t for t, _ in twts]))
|
||
if re.match(r"[0-9a-z ]+$", tt):
|
||
tms = f'("{tt}" OR "%s")' % rag_tokenizer.tokenize(tt)
|
||
|
||
syns = " OR ".join(
|
||
[
|
||
'"%s"^0.7'
|
||
% FulltextQueryer.subSpecialChar(rag_tokenizer.tokenize(s))
|
||
for s in syns
|
||
]
|
||
)
|
||
if syns:
|
||
tms = f"({tms})^5 OR ({syns})^0.7"
|
||
|
||
qs.append(tms)
|
||
|
||
if qs:
|
||
query = " OR ".join([f"({t})" for t in qs if t])
|
||
return MatchTextExpr(
|
||
self.query_fields, query, 100, {"minimum_should_match": min_match}
|
||
), keywords
|
||
return None, keywords
|
||
|
||
def hybrid_similarity(self, avec, bvecs, atks, btkss, tkweight=0.3, vtweight=0.7):
|
||
from sklearn.metrics.pairwise import cosine_similarity as CosineSimilarity
|
||
import numpy as np
|
||
|
||
sims = CosineSimilarity([avec], bvecs)
|
||
tksim = self.token_similarity(atks, btkss)
|
||
return np.array(sims[0]) * vtweight + np.array(tksim) * tkweight, tksim, sims[0]
|
||
|
||
def token_similarity(self, atks, btkss):
|
||
def toDict(tks):
|
||
d = {}
|
||
if isinstance(tks, str):
|
||
tks = tks.split(" ")
|
||
for t, c in self.tw.weights(tks, preprocess=False):
|
||
if t not in d:
|
||
d[t] = 0
|
||
d[t] += c
|
||
return d
|
||
|
||
atks = toDict(atks)
|
||
btkss = [toDict(tks) for tks in btkss]
|
||
return [self.similarity(atks, btks) for btks in btkss]
|
||
|
||
def similarity(self, qtwt, dtwt):
|
||
if isinstance(dtwt, type("")):
|
||
dtwt = {t: w for t, w in self.tw.weights(self.tw.split(dtwt), preprocess=False)}
|
||
if isinstance(qtwt, type("")):
|
||
qtwt = {t: w for t, w in self.tw.weights(self.tw.split(qtwt), preprocess=False)}
|
||
s = 1e-9
|
||
for k, v in qtwt.items():
|
||
if k in dtwt:
|
||
s += v # * dtwt[k]
|
||
q = 1e-9
|
||
for k, v in qtwt.items():
|
||
q += v
|
||
return s / q
|