mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-22 22:20:07 +08:00

### What problem does this PR solve? Use consistent log file names, introduced initLogger ### Type of change - [ ] Bug Fix (non-breaking change which fixes an issue) - [ ] New Feature (non-breaking change which adds functionality) - [ ] Documentation Update - [x] Refactoring - [ ] Performance Improvement - [ ] Other (please describe):
117 lines
5.2 KiB
Python
117 lines
5.2 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import logging
|
|
import re
|
|
from concurrent.futures import ThreadPoolExecutor, ALL_COMPLETED, wait
|
|
from threading import Lock
|
|
from typing import Tuple
|
|
import umap
|
|
import numpy as np
|
|
from sklearn.mixture import GaussianMixture
|
|
|
|
from rag.utils import truncate
|
|
|
|
|
|
class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
|
|
def __init__(self, max_cluster, llm_model, embd_model, prompt, max_token=256, threshold=0.1):
|
|
self._max_cluster = max_cluster
|
|
self._llm_model = llm_model
|
|
self._embd_model = embd_model
|
|
self._threshold = threshold
|
|
self._prompt = prompt
|
|
self._max_token = max_token
|
|
|
|
def _get_optimal_clusters(self, embeddings: np.ndarray, random_state:int):
|
|
max_clusters = min(self._max_cluster, len(embeddings))
|
|
n_clusters = np.arange(1, max_clusters)
|
|
bics = []
|
|
for n in n_clusters:
|
|
gm = GaussianMixture(n_components=n, random_state=random_state)
|
|
gm.fit(embeddings)
|
|
bics.append(gm.bic(embeddings))
|
|
optimal_clusters = n_clusters[np.argmin(bics)]
|
|
return optimal_clusters
|
|
|
|
def __call__(self, chunks: Tuple[str, np.ndarray], random_state, callback=None):
|
|
layers = [(0, len(chunks))]
|
|
start, end = 0, len(chunks)
|
|
if len(chunks) <= 1: return
|
|
chunks = [(s, a) for s, a in chunks if len(a) > 0]
|
|
|
|
def summarize(ck_idx, lock):
|
|
nonlocal chunks
|
|
try:
|
|
texts = [chunks[i][0] for i in ck_idx]
|
|
len_per_chunk = int((self._llm_model.max_length - self._max_token)/len(texts))
|
|
cluster_content = "\n".join([truncate(t, max(1, len_per_chunk)) for t in texts])
|
|
cnt = self._llm_model.chat("You're a helpful assistant.",
|
|
[{"role": "user", "content": self._prompt.format(cluster_content=cluster_content)}],
|
|
{"temperature": 0.3, "max_tokens": self._max_token}
|
|
)
|
|
cnt = re.sub("(······\n由于长度的原因,回答被截断了,要继续吗?|For the content length reason, it stopped, continue?)", "", cnt)
|
|
logging.debug(f"SUM: {cnt}")
|
|
embds, _ = self._embd_model.encode([cnt])
|
|
with lock:
|
|
if not len(embds[0]): return
|
|
chunks.append((cnt, embds[0]))
|
|
except Exception as e:
|
|
logging.exception("summarize got exception")
|
|
return e
|
|
|
|
labels = []
|
|
while end - start > 1:
|
|
embeddings = [embd for _, embd in chunks[start: end]]
|
|
if len(embeddings) == 2:
|
|
summarize([start, start+1], Lock())
|
|
if callback:
|
|
callback(msg="Cluster one layer: {} -> {}".format(end-start, len(chunks)-end))
|
|
labels.extend([0,0])
|
|
layers.append((end, len(chunks)))
|
|
start = end
|
|
end = len(chunks)
|
|
continue
|
|
|
|
n_neighbors = int((len(embeddings) - 1) ** 0.8)
|
|
reduced_embeddings = umap.UMAP(
|
|
n_neighbors=max(2, n_neighbors), n_components=min(12, len(embeddings)-2), metric="cosine"
|
|
).fit_transform(embeddings)
|
|
n_clusters = self._get_optimal_clusters(reduced_embeddings, random_state)
|
|
if n_clusters == 1:
|
|
lbls = [0 for _ in range(len(reduced_embeddings))]
|
|
else:
|
|
gm = GaussianMixture(n_components=n_clusters, random_state=random_state)
|
|
gm.fit(reduced_embeddings)
|
|
probs = gm.predict_proba(reduced_embeddings)
|
|
lbls = [np.where(prob > self._threshold)[0] for prob in probs]
|
|
lbls = [lbl[0] if isinstance(lbl, np.ndarray) else lbl for lbl in lbls]
|
|
lock = Lock()
|
|
with ThreadPoolExecutor(max_workers=12) as executor:
|
|
threads = []
|
|
for c in range(n_clusters):
|
|
ck_idx = [i+start for i in range(len(lbls)) if lbls[i] == c]
|
|
threads.append(executor.submit(summarize, ck_idx, lock))
|
|
wait(threads, return_when=ALL_COMPLETED)
|
|
logging.debug(str([t.result() for t in threads]))
|
|
|
|
assert len(chunks) - end == n_clusters, "{} vs. {}".format(len(chunks) - end, n_clusters)
|
|
labels.extend(lbls)
|
|
layers.append((end, len(chunks)))
|
|
if callback:
|
|
callback(msg="Cluster one layer: {} -> {}".format(end-start, len(chunks)-end))
|
|
start = end
|
|
end = len(chunks)
|
|
|