mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-22 06:00:00 +08:00

### What problem does this PR solve? update docs for release 0.8.0 ### Type of change - [x] Documentation Update --------- Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
91 lines
3.4 KiB
Python
91 lines
3.4 KiB
Python
#
|
||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
#
|
||
from abc import ABC
|
||
|
||
import pandas as pd
|
||
|
||
from api.db import LLMType
|
||
from api.db.services.llm_service import LLMBundle
|
||
from graph.component import GenerateParam, Generate
|
||
from graph.settings import DEBUG
|
||
|
||
|
||
class CategorizeParam(GenerateParam):
|
||
|
||
"""
|
||
Define the Categorize component parameters.
|
||
"""
|
||
def __init__(self):
|
||
super().__init__()
|
||
self.category_description = {}
|
||
self.prompt = ""
|
||
|
||
def check(self):
|
||
super().check()
|
||
self.check_empty(self.category_description, "[Categorize] Category examples")
|
||
for k, v in self.category_description.items():
|
||
if not k: raise ValueError(f"[Categorize] Category name can not be empty!")
|
||
if not v.get("to"): raise ValueError(f"[Categorize] 'To' of category {k} can not be empty!")
|
||
|
||
def get_prompt(self):
|
||
cate_lines = []
|
||
for c, desc in self.category_description.items():
|
||
for l in desc["examples"].split("\n"):
|
||
if not l: continue
|
||
cate_lines.append("Question: {}\tCategory: {}".format(l, c))
|
||
descriptions = []
|
||
for c, desc in self.category_description.items():
|
||
if desc.get("description"):
|
||
descriptions.append(
|
||
"--------------------\nCategory: {}\nDescription: {}\n".format(c, desc["description"]))
|
||
|
||
self.prompt = """
|
||
You're a text classifier. You need to categorize the user’s questions into {} categories,
|
||
namely: {}
|
||
Here's description of each category:
|
||
{}
|
||
|
||
You could learn from the following examples:
|
||
{}
|
||
You could learn from the above examples.
|
||
Just mention the category names, no need for any additional words.
|
||
""".format(
|
||
len(self.category_description.keys()),
|
||
"/".join(list(self.category_description.keys())),
|
||
"\n".join(descriptions),
|
||
"- ".join(cate_lines)
|
||
)
|
||
return self.prompt
|
||
|
||
|
||
class Categorize(Generate, ABC):
|
||
component_name = "Categorize"
|
||
|
||
def _run(self, history, **kwargs):
|
||
input = self.get_input()
|
||
input = "Question: " + ("; ".join(input["content"]) if "content" in input else "") + "Category: "
|
||
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
|
||
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": input}],
|
||
self._param.gen_conf())
|
||
if DEBUG: print(ans, ":::::::::::::::::::::::::::::::::", input)
|
||
for c in self._param.category_description.keys():
|
||
if ans.lower().find(c.lower()) >= 0:
|
||
return Categorize.be_output(self._param.category_description[c]["to"])
|
||
|
||
return Categorize.be_output(self._param.category_description.items()[-1][1]["to"])
|
||
|
||
|