mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-21 05:29:57 +08:00
134 lines
5.0 KiB
Python
134 lines
5.0 KiB
Python
import copy
|
||
import re
|
||
|
||
from api.db import ParserType
|
||
from rag.nlp import huqie, tokenize, tokenize_table, add_positions, bullets_category, title_frequency
|
||
from deepdoc.parser import PdfParser
|
||
from rag.utils import num_tokens_from_string
|
||
|
||
|
||
class Pdf(PdfParser):
|
||
def __init__(self):
|
||
self.model_speciess = ParserType.MANUAL.value
|
||
super().__init__()
|
||
|
||
def __call__(self, filename, binary=None, from_page=0,
|
||
to_page=100000, zoomin=3, callback=None):
|
||
from timeit import default_timer as timer
|
||
start = timer()
|
||
callback(msg="OCR is running...")
|
||
self.__images__(
|
||
filename if not binary else binary,
|
||
zoomin,
|
||
from_page,
|
||
to_page,
|
||
callback
|
||
)
|
||
callback(msg="OCR finished.")
|
||
#for bb in self.boxes:
|
||
# for b in bb:
|
||
# print(b)
|
||
print("OCR:", timer()-start)
|
||
|
||
def tag(pn, left, right, top, bottom):
|
||
return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
|
||
.format(pn, left, right, top, bottom)
|
||
|
||
self._layouts_rec(zoomin)
|
||
callback(0.65, "Layout analysis finished.")
|
||
print("paddle layouts:", timer() - start)
|
||
self._table_transformer_job(zoomin)
|
||
callback(0.67, "Table analysis finished.")
|
||
self._text_merge()
|
||
tbls = self._extract_table_figure(True, zoomin, True, True)
|
||
self._concat_downward()
|
||
self._filter_forpages()
|
||
callback(0.68, "Text merging finished")
|
||
|
||
# clean mess
|
||
for b in self.boxes:
|
||
b["text"] = re.sub(r"([\t ]|\u3000){2,}", " ", b["text"].strip())
|
||
|
||
# set pivot using the most frequent type of title,
|
||
# then merge between 2 pivot
|
||
if len(self.boxes)>0 and len(self.outlines)/len(self.boxes) > 0.1:
|
||
max_lvl = max([lvl for _, lvl in self.outlines])
|
||
most_level = max(0, max_lvl-1)
|
||
levels = []
|
||
for b in self.boxes:
|
||
for t,lvl in self.outlines:
|
||
tks = set([t[i]+t[i+1] for i in range(len(t)-1)])
|
||
tks_ = set([b["text"][i]+b["text"][i+1] for i in range(min(len(t), len(b["text"])-1))])
|
||
if len(set(tks & tks_))/max([len(tks), len(tks_), 1]) > 0.8:
|
||
levels.append(lvl)
|
||
break
|
||
else:
|
||
levels.append(max_lvl + 1)
|
||
else:
|
||
bull = bullets_category([b["text"] for b in self.boxes])
|
||
most_level, levels = title_frequency(bull, [(b["text"], b.get("layout_no","")) for b in self.boxes])
|
||
|
||
assert len(self.boxes) == len(levels)
|
||
sec_ids = []
|
||
sid = 0
|
||
for i, lvl in enumerate(levels):
|
||
if lvl <= most_level and i > 0 and lvl != levels[i-1]: sid += 1
|
||
sec_ids.append(sid)
|
||
#print(lvl, self.boxes[i]["text"], most_level, sid)
|
||
|
||
sections = [(b["text"], sec_ids[i], self.get_position(b, zoomin)) for i, b in enumerate(self.boxes)]
|
||
for (img, rows), poss in tbls:
|
||
sections.append((rows if isinstance(rows, str) else rows[0], -1, [(p[0]+1-from_page, p[1], p[2], p[3], p[4]) for p in poss]))
|
||
|
||
chunks = []
|
||
last_sid = -2
|
||
tk_cnt = 0
|
||
for txt, sec_id, poss in sorted(sections, key=lambda x: (x[-1][0][0], x[-1][0][3], x[-1][0][1])):
|
||
poss = "\t".join([tag(*pos) for pos in poss])
|
||
if tk_cnt < 2048 and (sec_id == last_sid or sec_id == -1):
|
||
if chunks:
|
||
chunks[-1] += "\n" + txt + poss
|
||
tk_cnt += num_tokens_from_string(txt)
|
||
continue
|
||
chunks.append(txt + poss)
|
||
tk_cnt = num_tokens_from_string(txt)
|
||
if sec_id >-1: last_sid = sec_id
|
||
return chunks, tbls
|
||
|
||
|
||
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
|
||
"""
|
||
Only pdf is supported.
|
||
"""
|
||
pdf_parser = None
|
||
|
||
if re.search(r"\.pdf$", filename, re.IGNORECASE):
|
||
pdf_parser = Pdf()
|
||
cks, tbls = pdf_parser(filename if not binary else binary,
|
||
from_page=from_page, to_page=to_page, callback=callback)
|
||
else: raise NotImplementedError("file type not supported yet(pdf supported)")
|
||
doc = {
|
||
"docnm_kwd": filename
|
||
}
|
||
doc["title_tks"] = huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
|
||
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
|
||
# is it English
|
||
eng = lang.lower() == "english"#pdf_parser.is_english
|
||
|
||
res = tokenize_table(tbls, doc, eng)
|
||
for ck in cks:
|
||
d = copy.deepcopy(doc)
|
||
d["image"], poss = pdf_parser.crop(ck, need_position=True)
|
||
add_positions(d, poss)
|
||
tokenize(d, pdf_parser.remove_tag(ck), eng)
|
||
res.append(d)
|
||
return res
|
||
|
||
|
||
|
||
if __name__ == "__main__":
|
||
import sys
|
||
def dummy(prog=None, msg=""):
|
||
pass
|
||
chunk(sys.argv[1], callback=dummy)
|