mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-20 13:10:05 +08:00

### What problem does this PR solve? Refactor graphrag to remove redis lock ### Type of change - [x] Refactoring
258 lines
10 KiB
Python
258 lines
10 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import logging
|
|
import re
|
|
from collections import defaultdict, Counter
|
|
from copy import deepcopy
|
|
from typing import Callable
|
|
import trio
|
|
|
|
from graphrag.general.graph_prompt import SUMMARIZE_DESCRIPTIONS_PROMPT
|
|
from graphrag.utils import get_llm_cache, set_llm_cache, handle_single_entity_extraction, \
|
|
handle_single_relationship_extraction, split_string_by_multi_markers, flat_uniq_list, chat_limiter
|
|
from rag.llm.chat_model import Base as CompletionLLM
|
|
from rag.prompts import message_fit_in
|
|
from rag.utils import truncate
|
|
|
|
GRAPH_FIELD_SEP = "<SEP>"
|
|
DEFAULT_ENTITY_TYPES = ["organization", "person", "geo", "event", "category"]
|
|
ENTITY_EXTRACTION_MAX_GLEANINGS = 2
|
|
|
|
|
|
class Extractor:
|
|
_llm: CompletionLLM
|
|
|
|
def __init__(
|
|
self,
|
|
llm_invoker: CompletionLLM,
|
|
language: str | None = "English",
|
|
entity_types: list[str] | None = None,
|
|
get_entity: Callable | None = None,
|
|
set_entity: Callable | None = None,
|
|
get_relation: Callable | None = None,
|
|
set_relation: Callable | None = None,
|
|
):
|
|
self._llm = llm_invoker
|
|
self._language = language
|
|
self._entity_types = entity_types or DEFAULT_ENTITY_TYPES
|
|
self._get_entity_ = get_entity
|
|
self._set_entity_ = set_entity
|
|
self._get_relation_ = get_relation
|
|
self._set_relation_ = set_relation
|
|
|
|
def _chat(self, system, history, gen_conf):
|
|
hist = deepcopy(history)
|
|
conf = deepcopy(gen_conf)
|
|
response = get_llm_cache(self._llm.llm_name, system, hist, conf)
|
|
if response:
|
|
return response
|
|
_, system_msg = message_fit_in([{"role": "system", "content": system}], int(self._llm.max_length * 0.97))
|
|
response = self._llm.chat(system_msg[0]["content"], hist, conf)
|
|
response = re.sub(r"<think>.*</think>", "", response, flags=re.DOTALL)
|
|
if response.find("**ERROR**") >= 0:
|
|
raise Exception(response)
|
|
set_llm_cache(self._llm.llm_name, system, response, history, gen_conf)
|
|
return response
|
|
|
|
def _entities_and_relations(self, chunk_key: str, records: list, tuple_delimiter: str):
|
|
maybe_nodes = defaultdict(list)
|
|
maybe_edges = defaultdict(list)
|
|
ent_types = [t.lower() for t in self._entity_types]
|
|
for record in records:
|
|
record_attributes = split_string_by_multi_markers(
|
|
record, [tuple_delimiter]
|
|
)
|
|
|
|
if_entities = handle_single_entity_extraction(
|
|
record_attributes, chunk_key
|
|
)
|
|
if if_entities is not None and if_entities.get("entity_type", "unknown").lower() in ent_types:
|
|
maybe_nodes[if_entities["entity_name"]].append(if_entities)
|
|
continue
|
|
|
|
if_relation = handle_single_relationship_extraction(
|
|
record_attributes, chunk_key
|
|
)
|
|
if if_relation is not None:
|
|
maybe_edges[(if_relation["src_id"], if_relation["tgt_id"])].append(
|
|
if_relation
|
|
)
|
|
return dict(maybe_nodes), dict(maybe_edges)
|
|
|
|
async def __call__(
|
|
self, doc_id: str, chunks: list[str],
|
|
callback: Callable | None = None
|
|
):
|
|
|
|
self.callback = callback
|
|
start_ts = trio.current_time()
|
|
out_results = []
|
|
async with trio.open_nursery() as nursery:
|
|
for i, ck in enumerate(chunks):
|
|
ck = truncate(ck, int(self._llm.max_length*0.8))
|
|
nursery.start_soon(lambda: self._process_single_content((doc_id, ck), i, len(chunks), out_results))
|
|
|
|
maybe_nodes = defaultdict(list)
|
|
maybe_edges = defaultdict(list)
|
|
sum_token_count = 0
|
|
for m_nodes, m_edges, token_count in out_results:
|
|
for k, v in m_nodes.items():
|
|
maybe_nodes[k].extend(v)
|
|
for k, v in m_edges.items():
|
|
maybe_edges[tuple(sorted(k))].extend(v)
|
|
sum_token_count += token_count
|
|
now = trio.current_time()
|
|
if callback:
|
|
callback(msg = f"Entities and relationships extraction done, {len(maybe_nodes)} nodes, {len(maybe_edges)} edges, {sum_token_count} tokens, {now-start_ts:.2f}s.")
|
|
start_ts = now
|
|
logging.info("Entities merging...")
|
|
all_entities_data = []
|
|
async with trio.open_nursery() as nursery:
|
|
for en_nm, ents in maybe_nodes.items():
|
|
nursery.start_soon(lambda: self._merge_nodes(en_nm, ents, all_entities_data))
|
|
now = trio.current_time()
|
|
if callback:
|
|
callback(msg = f"Entities merging done, {now-start_ts:.2f}s.")
|
|
|
|
start_ts = now
|
|
logging.info("Relationships merging...")
|
|
all_relationships_data = []
|
|
async with trio.open_nursery() as nursery:
|
|
for (src, tgt), rels in maybe_edges.items():
|
|
nursery.start_soon(lambda: self._merge_edges(src, tgt, rels, all_relationships_data))
|
|
now = trio.current_time()
|
|
if callback:
|
|
callback(msg = f"Relationships merging done, {now-start_ts:.2f}s.")
|
|
|
|
if not len(all_entities_data) and not len(all_relationships_data):
|
|
logging.warning(
|
|
"Didn't extract any entities and relationships, maybe your LLM is not working"
|
|
)
|
|
|
|
if not len(all_entities_data):
|
|
logging.warning("Didn't extract any entities")
|
|
if not len(all_relationships_data):
|
|
logging.warning("Didn't extract any relationships")
|
|
|
|
return all_entities_data, all_relationships_data
|
|
|
|
async def _merge_nodes(self, entity_name: str, entities: list[dict], all_relationships_data):
|
|
if not entities:
|
|
return
|
|
already_entity_types = []
|
|
already_source_ids = []
|
|
already_description = []
|
|
|
|
already_node = self._get_entity_(entity_name)
|
|
if already_node:
|
|
already_entity_types.append(already_node["entity_type"])
|
|
already_source_ids.extend(already_node["source_id"])
|
|
already_description.append(already_node["description"])
|
|
|
|
entity_type = sorted(
|
|
Counter(
|
|
[dp["entity_type"] for dp in entities] + already_entity_types
|
|
).items(),
|
|
key=lambda x: x[1],
|
|
reverse=True,
|
|
)[0][0]
|
|
description = GRAPH_FIELD_SEP.join(
|
|
sorted(set([dp["description"] for dp in entities] + already_description))
|
|
)
|
|
already_source_ids = flat_uniq_list(entities, "source_id")
|
|
description = await self._handle_entity_relation_summary(entity_name, description)
|
|
node_data = dict(
|
|
entity_type=entity_type,
|
|
description=description,
|
|
source_id=already_source_ids,
|
|
)
|
|
node_data["entity_name"] = entity_name
|
|
self._set_entity_(entity_name, node_data)
|
|
all_relationships_data.append(node_data)
|
|
|
|
async def _merge_edges(
|
|
self,
|
|
src_id: str,
|
|
tgt_id: str,
|
|
edges_data: list[dict],
|
|
all_relationships_data=None
|
|
):
|
|
if not edges_data:
|
|
return
|
|
already_weights = []
|
|
already_source_ids = []
|
|
already_description = []
|
|
already_keywords = []
|
|
|
|
relation = self._get_relation_(src_id, tgt_id)
|
|
if relation:
|
|
already_weights = [relation["weight"]]
|
|
already_source_ids = relation["source_id"]
|
|
already_description = [relation["description"]]
|
|
already_keywords = relation["keywords"]
|
|
|
|
weight = sum([dp["weight"] for dp in edges_data] + already_weights)
|
|
description = GRAPH_FIELD_SEP.join(
|
|
sorted(set([dp["description"] for dp in edges_data] + already_description))
|
|
)
|
|
keywords = flat_uniq_list(edges_data, "keywords") + already_keywords
|
|
source_id = flat_uniq_list(edges_data, "source_id") + already_source_ids
|
|
|
|
for need_insert_id in [src_id, tgt_id]:
|
|
if self._get_entity_(need_insert_id):
|
|
continue
|
|
self._set_entity_(need_insert_id, {
|
|
"source_id": source_id,
|
|
"description": description,
|
|
"entity_type": 'UNKNOWN'
|
|
})
|
|
description = await self._handle_entity_relation_summary(
|
|
f"({src_id}, {tgt_id})", description
|
|
)
|
|
edge_data = dict(
|
|
src_id=src_id,
|
|
tgt_id=tgt_id,
|
|
description=description,
|
|
keywords=keywords,
|
|
weight=weight,
|
|
source_id=source_id
|
|
)
|
|
self._set_relation_(src_id, tgt_id, edge_data)
|
|
if all_relationships_data is not None:
|
|
all_relationships_data.append(edge_data)
|
|
|
|
async def _handle_entity_relation_summary(
|
|
self,
|
|
entity_or_relation_name: str,
|
|
description: str
|
|
) -> str:
|
|
summary_max_tokens = 512
|
|
use_description = truncate(description, summary_max_tokens)
|
|
description_list=use_description.split(GRAPH_FIELD_SEP),
|
|
if len(description_list) <= 12:
|
|
return use_description
|
|
prompt_template = SUMMARIZE_DESCRIPTIONS_PROMPT
|
|
context_base = dict(
|
|
entity_name=entity_or_relation_name,
|
|
description_list=description_list,
|
|
language=self._language,
|
|
)
|
|
use_prompt = prompt_template.format(**context_base)
|
|
logging.info(f"Trigger summary: {entity_or_relation_name}")
|
|
async with chat_limiter:
|
|
summary = await trio.to_thread.run_sync(lambda: self._chat(use_prompt, [{"role": "user", "content": "Output: "}], {"temperature": 0.8}))
|
|
return summary
|