mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-23 14:40:03 +08:00

### What problem does this PR solve? Refactor graphrag to remove redis lock ### Type of change - [x] Refactoring
368 lines
12 KiB
Python
368 lines
12 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import json
|
|
import logging
|
|
from functools import partial
|
|
import networkx as nx
|
|
import trio
|
|
|
|
from api import settings
|
|
from graphrag.light.graph_extractor import GraphExtractor as LightKGExt
|
|
from graphrag.general.graph_extractor import GraphExtractor as GeneralKGExt
|
|
from graphrag.general.community_reports_extractor import CommunityReportsExtractor
|
|
from graphrag.entity_resolution import EntityResolution
|
|
from graphrag.general.extractor import Extractor
|
|
from graphrag.utils import (
|
|
graph_merge,
|
|
set_entity,
|
|
get_relation,
|
|
set_relation,
|
|
get_entity,
|
|
get_graph,
|
|
set_graph,
|
|
chunk_id,
|
|
update_nodes_pagerank_nhop_neighbour,
|
|
does_graph_contains,
|
|
get_graph_doc_ids,
|
|
)
|
|
from rag.nlp import rag_tokenizer, search
|
|
from rag.utils.redis_conn import REDIS_CONN
|
|
|
|
|
|
def graphrag_task_set(tenant_id, kb_id, doc_id) -> bool:
|
|
key = f"graphrag:{tenant_id}:{kb_id}"
|
|
ok = REDIS_CONN.set(key, doc_id, exp=3600 * 24)
|
|
if not ok:
|
|
raise Exception(f"Faild to set the {key} to {doc_id}")
|
|
|
|
|
|
def graphrag_task_get(tenant_id, kb_id) -> str | None:
|
|
key = f"graphrag:{tenant_id}:{kb_id}"
|
|
doc_id = REDIS_CONN.get(key)
|
|
return doc_id
|
|
|
|
|
|
async def run_graphrag(
|
|
row: dict,
|
|
language,
|
|
with_resolution: bool,
|
|
with_community: bool,
|
|
chat_model,
|
|
embedding_model,
|
|
callback,
|
|
):
|
|
start = trio.current_time()
|
|
tenant_id, kb_id, doc_id = row["tenant_id"], str(row["kb_id"]), row["doc_id"]
|
|
chunks = []
|
|
for d in settings.retrievaler.chunk_list(
|
|
doc_id, tenant_id, [kb_id], fields=["content_with_weight", "doc_id"]
|
|
):
|
|
chunks.append(d["content_with_weight"])
|
|
|
|
graph, doc_ids = await update_graph(
|
|
LightKGExt
|
|
if row["parser_config"]["graphrag"]["method"] != "general"
|
|
else GeneralKGExt,
|
|
tenant_id,
|
|
kb_id,
|
|
doc_id,
|
|
chunks,
|
|
language,
|
|
row["parser_config"]["graphrag"]["entity_types"],
|
|
chat_model,
|
|
embedding_model,
|
|
callback,
|
|
)
|
|
if not graph:
|
|
return
|
|
if with_resolution or with_community:
|
|
graphrag_task_set(tenant_id, kb_id, doc_id)
|
|
if with_resolution:
|
|
await resolve_entities(
|
|
graph,
|
|
doc_ids,
|
|
tenant_id,
|
|
kb_id,
|
|
doc_id,
|
|
chat_model,
|
|
embedding_model,
|
|
callback,
|
|
)
|
|
if with_community:
|
|
await extract_community(
|
|
graph,
|
|
doc_ids,
|
|
tenant_id,
|
|
kb_id,
|
|
doc_id,
|
|
chat_model,
|
|
embedding_model,
|
|
callback,
|
|
)
|
|
now = trio.current_time()
|
|
callback(msg=f"GraphRAG for doc {doc_id} done in {now - start:.2f} seconds.")
|
|
return
|
|
|
|
|
|
async def update_graph(
|
|
extractor: Extractor,
|
|
tenant_id: str,
|
|
kb_id: str,
|
|
doc_id: str,
|
|
chunks: list[str],
|
|
language,
|
|
entity_types,
|
|
llm_bdl,
|
|
embed_bdl,
|
|
callback,
|
|
):
|
|
contains = await does_graph_contains(tenant_id, kb_id, doc_id)
|
|
if contains:
|
|
callback(msg=f"Graph already contains {doc_id}, cancel myself")
|
|
return None, None
|
|
start = trio.current_time()
|
|
ext = extractor(
|
|
llm_bdl,
|
|
language=language,
|
|
entity_types=entity_types,
|
|
get_entity=partial(get_entity, tenant_id, kb_id),
|
|
set_entity=partial(set_entity, tenant_id, kb_id, embed_bdl),
|
|
get_relation=partial(get_relation, tenant_id, kb_id),
|
|
set_relation=partial(set_relation, tenant_id, kb_id, embed_bdl),
|
|
)
|
|
ents, rels = await ext(doc_id, chunks, callback)
|
|
subgraph = nx.Graph()
|
|
for en in ents:
|
|
subgraph.add_node(en["entity_name"], entity_type=en["entity_type"])
|
|
|
|
for rel in rels:
|
|
subgraph.add_edge(
|
|
rel["src_id"],
|
|
rel["tgt_id"],
|
|
weight=rel["weight"],
|
|
# description=rel["description"]
|
|
)
|
|
# TODO: infinity doesn't support array search
|
|
chunk = {
|
|
"content_with_weight": json.dumps(
|
|
nx.node_link_data(subgraph, edges="edges"), ensure_ascii=False, indent=2
|
|
),
|
|
"knowledge_graph_kwd": "subgraph",
|
|
"kb_id": kb_id,
|
|
"source_id": [doc_id],
|
|
"available_int": 0,
|
|
"removed_kwd": "N",
|
|
}
|
|
cid = chunk_id(chunk)
|
|
await trio.to_thread.run_sync(
|
|
lambda: settings.docStoreConn.insert(
|
|
[{"id": cid, **chunk}], search.index_name(tenant_id), kb_id
|
|
)
|
|
)
|
|
now = trio.current_time()
|
|
callback(msg=f"generated subgraph for doc {doc_id} in {now - start:.2f} seconds.")
|
|
start = now
|
|
|
|
while True:
|
|
new_graph = subgraph
|
|
now_docids = set([doc_id])
|
|
old_graph, old_doc_ids = await get_graph(tenant_id, kb_id)
|
|
if old_graph is not None:
|
|
logging.info("Merge with an exiting graph...................")
|
|
new_graph = graph_merge(old_graph, subgraph)
|
|
await update_nodes_pagerank_nhop_neighbour(tenant_id, kb_id, new_graph, 2)
|
|
if old_doc_ids:
|
|
for old_doc_id in old_doc_ids:
|
|
now_docids.add(old_doc_id)
|
|
old_doc_ids2 = await get_graph_doc_ids(tenant_id, kb_id)
|
|
delta_doc_ids = set(old_doc_ids2) - set(old_doc_ids)
|
|
if delta_doc_ids:
|
|
callback(
|
|
msg="The global graph has changed during merging, try again"
|
|
)
|
|
await trio.sleep(1)
|
|
continue
|
|
break
|
|
await set_graph(tenant_id, kb_id, new_graph, list(now_docids))
|
|
now = trio.current_time()
|
|
callback(
|
|
msg=f"merging subgraph for doc {doc_id} into the global graph done in {now - start:.2f} seconds."
|
|
)
|
|
return new_graph, now_docids
|
|
|
|
|
|
async def resolve_entities(
|
|
graph,
|
|
doc_ids,
|
|
tenant_id: str,
|
|
kb_id: str,
|
|
doc_id: str,
|
|
llm_bdl,
|
|
embed_bdl,
|
|
callback,
|
|
):
|
|
working_doc_id = graphrag_task_get(tenant_id, kb_id)
|
|
if doc_id != working_doc_id:
|
|
callback(
|
|
msg=f"Another graphrag task of doc_id {working_doc_id} is working on this kb, cancel myself"
|
|
)
|
|
return
|
|
start = trio.current_time()
|
|
er = EntityResolution(
|
|
llm_bdl,
|
|
get_entity=partial(get_entity, tenant_id, kb_id),
|
|
set_entity=partial(set_entity, tenant_id, kb_id, embed_bdl),
|
|
get_relation=partial(get_relation, tenant_id, kb_id),
|
|
set_relation=partial(set_relation, tenant_id, kb_id, embed_bdl),
|
|
)
|
|
reso = await er(graph)
|
|
graph = reso.graph
|
|
callback(msg=f"Graph resolution removed {len(reso.removed_entities)} nodes.")
|
|
await update_nodes_pagerank_nhop_neighbour(tenant_id, kb_id, graph, 2)
|
|
callback(msg="Graph resolution updated pagerank.")
|
|
|
|
working_doc_id = graphrag_task_get(tenant_id, kb_id)
|
|
if doc_id != working_doc_id:
|
|
callback(
|
|
msg=f"Another graphrag task of doc_id {working_doc_id} is working on this kb, cancel myself"
|
|
)
|
|
return
|
|
await set_graph(tenant_id, kb_id, graph, doc_ids)
|
|
|
|
await trio.to_thread.run_sync(
|
|
lambda: settings.docStoreConn.delete(
|
|
{
|
|
"knowledge_graph_kwd": "relation",
|
|
"kb_id": kb_id,
|
|
"from_entity_kwd": reso.removed_entities,
|
|
},
|
|
search.index_name(tenant_id),
|
|
kb_id,
|
|
)
|
|
)
|
|
await trio.to_thread.run_sync(
|
|
lambda: settings.docStoreConn.delete(
|
|
{
|
|
"knowledge_graph_kwd": "relation",
|
|
"kb_id": kb_id,
|
|
"to_entity_kwd": reso.removed_entities,
|
|
},
|
|
search.index_name(tenant_id),
|
|
kb_id,
|
|
)
|
|
)
|
|
await trio.to_thread.run_sync(
|
|
lambda: settings.docStoreConn.delete(
|
|
{
|
|
"knowledge_graph_kwd": "entity",
|
|
"kb_id": kb_id,
|
|
"entity_kwd": reso.removed_entities,
|
|
},
|
|
search.index_name(tenant_id),
|
|
kb_id,
|
|
)
|
|
)
|
|
now = trio.current_time()
|
|
callback(msg=f"Graph resolution done in {now - start:.2f}s.")
|
|
|
|
|
|
async def extract_community(
|
|
graph,
|
|
doc_ids,
|
|
tenant_id: str,
|
|
kb_id: str,
|
|
doc_id: str,
|
|
llm_bdl,
|
|
embed_bdl,
|
|
callback,
|
|
):
|
|
working_doc_id = graphrag_task_get(tenant_id, kb_id)
|
|
if doc_id != working_doc_id:
|
|
callback(
|
|
msg=f"Another graphrag task of doc_id {working_doc_id} is working on this kb, cancel myself"
|
|
)
|
|
return
|
|
start = trio.current_time()
|
|
ext = CommunityReportsExtractor(
|
|
llm_bdl,
|
|
get_entity=partial(get_entity, tenant_id, kb_id),
|
|
set_entity=partial(set_entity, tenant_id, kb_id, embed_bdl),
|
|
get_relation=partial(get_relation, tenant_id, kb_id),
|
|
set_relation=partial(set_relation, tenant_id, kb_id, embed_bdl),
|
|
)
|
|
cr = await ext(graph, callback=callback)
|
|
community_structure = cr.structured_output
|
|
community_reports = cr.output
|
|
working_doc_id = graphrag_task_get(tenant_id, kb_id)
|
|
if doc_id != working_doc_id:
|
|
callback(
|
|
msg=f"Another graphrag task of doc_id {working_doc_id} is working on this kb, cancel myself"
|
|
)
|
|
return
|
|
await set_graph(tenant_id, kb_id, graph, doc_ids)
|
|
|
|
now = trio.current_time()
|
|
callback(
|
|
msg=f"Graph extracted {len(cr.structured_output)} communities in {now - start:.2f}s."
|
|
)
|
|
start = now
|
|
await trio.to_thread.run_sync(
|
|
lambda: settings.docStoreConn.delete(
|
|
{"knowledge_graph_kwd": "community_report", "kb_id": kb_id},
|
|
search.index_name(tenant_id),
|
|
kb_id,
|
|
)
|
|
)
|
|
for stru, rep in zip(community_structure, community_reports):
|
|
obj = {
|
|
"report": rep,
|
|
"evidences": "\n".join([f["explanation"] for f in stru["findings"]]),
|
|
}
|
|
chunk = {
|
|
"docnm_kwd": stru["title"],
|
|
"title_tks": rag_tokenizer.tokenize(stru["title"]),
|
|
"content_with_weight": json.dumps(obj, ensure_ascii=False),
|
|
"content_ltks": rag_tokenizer.tokenize(
|
|
obj["report"] + " " + obj["evidences"]
|
|
),
|
|
"knowledge_graph_kwd": "community_report",
|
|
"weight_flt": stru["weight"],
|
|
"entities_kwd": stru["entities"],
|
|
"important_kwd": stru["entities"],
|
|
"kb_id": kb_id,
|
|
"source_id": doc_ids,
|
|
"available_int": 0,
|
|
}
|
|
chunk["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(
|
|
chunk["content_ltks"]
|
|
)
|
|
# try:
|
|
# ebd, _ = embed_bdl.encode([", ".join(community["entities"])])
|
|
# chunk["q_%d_vec" % len(ebd[0])] = ebd[0]
|
|
# except Exception as e:
|
|
# logging.exception(f"Fail to embed entity relation: {e}")
|
|
await trio.to_thread.run_sync(
|
|
lambda: settings.docStoreConn.insert(
|
|
[{"id": chunk_id(chunk), **chunk}], search.index_name(tenant_id)
|
|
)
|
|
)
|
|
|
|
now = trio.current_time()
|
|
callback(
|
|
msg=f"Graph indexed {len(cr.structured_output)} communities in {now - start:.2f}s."
|
|
)
|
|
return community_structure, community_reports
|