mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-20 13:10:05 +08:00

### What problem does this PR solve? Refactor graphrag to remove redis lock ### Type of change - [x] Refactoring
589 lines
20 KiB
Python
589 lines
20 KiB
Python
# Copyright (c) 2024 Microsoft Corporation.
|
|
# Licensed under the MIT License
|
|
"""
|
|
Reference:
|
|
- [graphrag](https://github.com/microsoft/graphrag)
|
|
- [LightRag](https://github.com/HKUDS/LightRAG)
|
|
"""
|
|
|
|
import html
|
|
import json
|
|
import logging
|
|
import re
|
|
import time
|
|
from collections import defaultdict
|
|
from copy import deepcopy
|
|
from hashlib import md5
|
|
from typing import Any, Callable
|
|
import os
|
|
import trio
|
|
|
|
import networkx as nx
|
|
import numpy as np
|
|
import xxhash
|
|
from networkx.readwrite import json_graph
|
|
|
|
from api import settings
|
|
from rag.nlp import search, rag_tokenizer
|
|
from rag.utils.doc_store_conn import OrderByExpr
|
|
from rag.utils.redis_conn import REDIS_CONN
|
|
|
|
ErrorHandlerFn = Callable[[BaseException | None, str | None, dict | None], None]
|
|
|
|
chat_limiter = trio.CapacityLimiter(int(os.environ.get('MAX_CONCURRENT_CHATS', 10)))
|
|
|
|
def perform_variable_replacements(
|
|
input: str, history: list[dict] | None = None, variables: dict | None = None
|
|
) -> str:
|
|
"""Perform variable replacements on the input string and in a chat log."""
|
|
if history is None:
|
|
history = []
|
|
if variables is None:
|
|
variables = {}
|
|
result = input
|
|
|
|
def replace_all(input: str) -> str:
|
|
result = input
|
|
for k, v in variables.items():
|
|
result = result.replace(f"{{{k}}}", v)
|
|
return result
|
|
|
|
result = replace_all(result)
|
|
for i, entry in enumerate(history):
|
|
if entry.get("role") == "system":
|
|
entry["content"] = replace_all(entry.get("content") or "")
|
|
|
|
return result
|
|
|
|
|
|
def clean_str(input: Any) -> str:
|
|
"""Clean an input string by removing HTML escapes, control characters, and other unwanted characters."""
|
|
# If we get non-string input, just give it back
|
|
if not isinstance(input, str):
|
|
return input
|
|
|
|
result = html.unescape(input.strip())
|
|
# https://stackoverflow.com/questions/4324790/removing-control-characters-from-a-string-in-python
|
|
return re.sub(r"[\"\x00-\x1f\x7f-\x9f]", "", result)
|
|
|
|
|
|
def dict_has_keys_with_types(
|
|
data: dict, expected_fields: list[tuple[str, type]]
|
|
) -> bool:
|
|
"""Return True if the given dictionary has the given keys with the given types."""
|
|
for field, field_type in expected_fields:
|
|
if field not in data:
|
|
return False
|
|
|
|
value = data[field]
|
|
if not isinstance(value, field_type):
|
|
return False
|
|
return True
|
|
|
|
|
|
def get_llm_cache(llmnm, txt, history, genconf):
|
|
hasher = xxhash.xxh64()
|
|
hasher.update(str(llmnm).encode("utf-8"))
|
|
hasher.update(str(txt).encode("utf-8"))
|
|
hasher.update(str(history).encode("utf-8"))
|
|
hasher.update(str(genconf).encode("utf-8"))
|
|
|
|
k = hasher.hexdigest()
|
|
bin = REDIS_CONN.get(k)
|
|
if not bin:
|
|
return
|
|
return bin
|
|
|
|
|
|
def set_llm_cache(llmnm, txt, v, history, genconf):
|
|
hasher = xxhash.xxh64()
|
|
hasher.update(str(llmnm).encode("utf-8"))
|
|
hasher.update(str(txt).encode("utf-8"))
|
|
hasher.update(str(history).encode("utf-8"))
|
|
hasher.update(str(genconf).encode("utf-8"))
|
|
|
|
k = hasher.hexdigest()
|
|
REDIS_CONN.set(k, v.encode("utf-8"), 24*3600)
|
|
|
|
|
|
def get_embed_cache(llmnm, txt):
|
|
hasher = xxhash.xxh64()
|
|
hasher.update(str(llmnm).encode("utf-8"))
|
|
hasher.update(str(txt).encode("utf-8"))
|
|
|
|
k = hasher.hexdigest()
|
|
bin = REDIS_CONN.get(k)
|
|
if not bin:
|
|
return
|
|
return np.array(json.loads(bin))
|
|
|
|
|
|
def set_embed_cache(llmnm, txt, arr):
|
|
hasher = xxhash.xxh64()
|
|
hasher.update(str(llmnm).encode("utf-8"))
|
|
hasher.update(str(txt).encode("utf-8"))
|
|
|
|
k = hasher.hexdigest()
|
|
arr = json.dumps(arr.tolist() if isinstance(arr, np.ndarray) else arr)
|
|
REDIS_CONN.set(k, arr.encode("utf-8"), 24*3600)
|
|
|
|
|
|
def get_tags_from_cache(kb_ids):
|
|
hasher = xxhash.xxh64()
|
|
hasher.update(str(kb_ids).encode("utf-8"))
|
|
|
|
k = hasher.hexdigest()
|
|
bin = REDIS_CONN.get(k)
|
|
if not bin:
|
|
return
|
|
return bin
|
|
|
|
|
|
def set_tags_to_cache(kb_ids, tags):
|
|
hasher = xxhash.xxh64()
|
|
hasher.update(str(kb_ids).encode("utf-8"))
|
|
|
|
k = hasher.hexdigest()
|
|
REDIS_CONN.set(k, json.dumps(tags).encode("utf-8"), 600)
|
|
|
|
|
|
def graph_merge(g1, g2):
|
|
g = g2.copy()
|
|
for n, attr in g1.nodes(data=True):
|
|
if n not in g2.nodes():
|
|
g.add_node(n, **attr)
|
|
continue
|
|
|
|
for source, target, attr in g1.edges(data=True):
|
|
if g.has_edge(source, target):
|
|
g[source][target].update({"weight": attr.get("weight", 0)+1})
|
|
continue
|
|
g.add_edge(source, target)#, **attr)
|
|
|
|
for node_degree in g.degree:
|
|
g.nodes[str(node_degree[0])]["rank"] = int(node_degree[1])
|
|
return g
|
|
|
|
|
|
def compute_args_hash(*args):
|
|
return md5(str(args).encode()).hexdigest()
|
|
|
|
|
|
def handle_single_entity_extraction(
|
|
record_attributes: list[str],
|
|
chunk_key: str,
|
|
):
|
|
if len(record_attributes) < 4 or record_attributes[0] != '"entity"':
|
|
return None
|
|
# add this record as a node in the G
|
|
entity_name = clean_str(record_attributes[1].upper())
|
|
if not entity_name.strip():
|
|
return None
|
|
entity_type = clean_str(record_attributes[2].upper())
|
|
entity_description = clean_str(record_attributes[3])
|
|
entity_source_id = chunk_key
|
|
return dict(
|
|
entity_name=entity_name.upper(),
|
|
entity_type=entity_type.upper(),
|
|
description=entity_description,
|
|
source_id=entity_source_id,
|
|
)
|
|
|
|
|
|
def handle_single_relationship_extraction(record_attributes: list[str], chunk_key: str):
|
|
if len(record_attributes) < 5 or record_attributes[0] != '"relationship"':
|
|
return None
|
|
# add this record as edge
|
|
source = clean_str(record_attributes[1].upper())
|
|
target = clean_str(record_attributes[2].upper())
|
|
edge_description = clean_str(record_attributes[3])
|
|
|
|
edge_keywords = clean_str(record_attributes[4])
|
|
edge_source_id = chunk_key
|
|
weight = (
|
|
float(record_attributes[-1]) if is_float_regex(record_attributes[-1]) else 1.0
|
|
)
|
|
pair = sorted([source.upper(), target.upper()])
|
|
return dict(
|
|
src_id=pair[0],
|
|
tgt_id=pair[1],
|
|
weight=weight,
|
|
description=edge_description,
|
|
keywords=edge_keywords,
|
|
source_id=edge_source_id,
|
|
metadata={"created_at": time.time()},
|
|
)
|
|
|
|
|
|
def pack_user_ass_to_openai_messages(*args: str):
|
|
roles = ["user", "assistant"]
|
|
return [
|
|
{"role": roles[i % 2], "content": content} for i, content in enumerate(args)
|
|
]
|
|
|
|
|
|
def split_string_by_multi_markers(content: str, markers: list[str]) -> list[str]:
|
|
"""Split a string by multiple markers"""
|
|
if not markers:
|
|
return [content]
|
|
results = re.split("|".join(re.escape(marker) for marker in markers), content)
|
|
return [r.strip() for r in results if r.strip()]
|
|
|
|
|
|
def is_float_regex(value):
|
|
return bool(re.match(r"^[-+]?[0-9]*\.?[0-9]+$", value))
|
|
|
|
|
|
def chunk_id(chunk):
|
|
return xxhash.xxh64((chunk["content_with_weight"] + chunk["kb_id"]).encode("utf-8")).hexdigest()
|
|
|
|
|
|
def get_entity(tenant_id, kb_id, ent_name):
|
|
conds = {
|
|
"fields": ["content_with_weight"],
|
|
"entity_kwd": ent_name,
|
|
"size": 10000,
|
|
"knowledge_graph_kwd": ["entity"]
|
|
}
|
|
res = []
|
|
es_res = settings.retrievaler.search(conds, search.index_name(tenant_id), [kb_id])
|
|
for id in es_res.ids:
|
|
try:
|
|
if isinstance(ent_name, str):
|
|
return json.loads(es_res.field[id]["content_with_weight"])
|
|
res.append(json.loads(es_res.field[id]["content_with_weight"]))
|
|
except Exception:
|
|
continue
|
|
|
|
return res
|
|
|
|
|
|
def set_entity(tenant_id, kb_id, embd_mdl, ent_name, meta):
|
|
chunk = {
|
|
"important_kwd": [ent_name],
|
|
"title_tks": rag_tokenizer.tokenize(ent_name),
|
|
"entity_kwd": ent_name,
|
|
"knowledge_graph_kwd": "entity",
|
|
"entity_type_kwd": meta["entity_type"],
|
|
"content_with_weight": json.dumps(meta, ensure_ascii=False),
|
|
"content_ltks": rag_tokenizer.tokenize(meta["description"]),
|
|
"source_id": list(set(meta["source_id"])),
|
|
"kb_id": kb_id,
|
|
"available_int": 0
|
|
}
|
|
chunk["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(chunk["content_ltks"])
|
|
res = settings.retrievaler.search({"entity_kwd": ent_name, "size": 1, "fields": []},
|
|
search.index_name(tenant_id), [kb_id])
|
|
if res.ids:
|
|
settings.docStoreConn.update({"entity_kwd": ent_name}, chunk, search.index_name(tenant_id), kb_id)
|
|
else:
|
|
ebd = get_embed_cache(embd_mdl.llm_name, ent_name)
|
|
if ebd is None:
|
|
try:
|
|
ebd, _ = embd_mdl.encode([ent_name])
|
|
ebd = ebd[0]
|
|
set_embed_cache(embd_mdl.llm_name, ent_name, ebd)
|
|
except Exception as e:
|
|
logging.exception(f"Fail to embed entity: {e}")
|
|
if ebd is not None:
|
|
chunk["q_%d_vec" % len(ebd)] = ebd
|
|
settings.docStoreConn.insert([{"id": chunk_id(chunk), **chunk}], search.index_name(tenant_id), kb_id)
|
|
|
|
|
|
def get_relation(tenant_id, kb_id, from_ent_name, to_ent_name, size=1):
|
|
ents = from_ent_name
|
|
if isinstance(ents, str):
|
|
ents = [from_ent_name]
|
|
if isinstance(to_ent_name, str):
|
|
to_ent_name = [to_ent_name]
|
|
ents.extend(to_ent_name)
|
|
ents = list(set(ents))
|
|
conds = {
|
|
"fields": ["content_with_weight"],
|
|
"size": size,
|
|
"from_entity_kwd": ents,
|
|
"to_entity_kwd": ents,
|
|
"knowledge_graph_kwd": ["relation"]
|
|
}
|
|
res = []
|
|
es_res = settings.retrievaler.search(conds, search.index_name(tenant_id), [kb_id] if isinstance(kb_id, str) else kb_id)
|
|
for id in es_res.ids:
|
|
try:
|
|
if size == 1:
|
|
return json.loads(es_res.field[id]["content_with_weight"])
|
|
res.append(json.loads(es_res.field[id]["content_with_weight"]))
|
|
except Exception:
|
|
continue
|
|
return res
|
|
|
|
|
|
def set_relation(tenant_id, kb_id, embd_mdl, from_ent_name, to_ent_name, meta):
|
|
chunk = {
|
|
"from_entity_kwd": from_ent_name,
|
|
"to_entity_kwd": to_ent_name,
|
|
"knowledge_graph_kwd": "relation",
|
|
"content_with_weight": json.dumps(meta, ensure_ascii=False),
|
|
"content_ltks": rag_tokenizer.tokenize(meta["description"]),
|
|
"important_kwd": meta["keywords"],
|
|
"source_id": list(set(meta["source_id"])),
|
|
"weight_int": int(meta["weight"]),
|
|
"kb_id": kb_id,
|
|
"available_int": 0
|
|
}
|
|
chunk["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(chunk["content_ltks"])
|
|
res = settings.retrievaler.search({"from_entity_kwd": to_ent_name, "to_entity_kwd": to_ent_name, "size": 1, "fields": []},
|
|
search.index_name(tenant_id), [kb_id])
|
|
|
|
if res.ids:
|
|
settings.docStoreConn.update({"from_entity_kwd": from_ent_name, "to_entity_kwd": to_ent_name},
|
|
chunk,
|
|
search.index_name(tenant_id), kb_id)
|
|
else:
|
|
txt = f"{from_ent_name}->{to_ent_name}"
|
|
ebd = get_embed_cache(embd_mdl.llm_name, txt)
|
|
if ebd is None:
|
|
try:
|
|
ebd, _ = embd_mdl.encode([txt+f": {meta['description']}"])
|
|
ebd = ebd[0]
|
|
set_embed_cache(embd_mdl.llm_name, txt, ebd)
|
|
except Exception as e:
|
|
logging.exception(f"Fail to embed entity relation: {e}")
|
|
if ebd is not None:
|
|
chunk["q_%d_vec" % len(ebd)] = ebd
|
|
settings.docStoreConn.insert([{"id": chunk_id(chunk), **chunk}], search.index_name(tenant_id), kb_id)
|
|
|
|
async def does_graph_contains(tenant_id, kb_id, doc_id):
|
|
# Get doc_ids of graph
|
|
fields = ["source_id"]
|
|
condition = {
|
|
"knowledge_graph_kwd": ["graph"],
|
|
"removed_kwd": "N",
|
|
}
|
|
res = await trio.to_thread.run_sync(lambda: settings.docStoreConn.search(fields, [], condition, [], OrderByExpr(), 0, 1, search.index_name(tenant_id), [kb_id]))
|
|
fields2 = settings.docStoreConn.getFields(res, fields)
|
|
graph_doc_ids = set()
|
|
for chunk_id in fields2.keys():
|
|
graph_doc_ids = set(fields2[chunk_id]["source_id"])
|
|
return doc_id in graph_doc_ids
|
|
|
|
async def get_graph_doc_ids(tenant_id, kb_id) -> list[str]:
|
|
conds = {
|
|
"fields": ["source_id"],
|
|
"removed_kwd": "N",
|
|
"size": 1,
|
|
"knowledge_graph_kwd": ["graph"]
|
|
}
|
|
res = await trio.to_thread.run_sync(lambda: settings.retrievaler.search(conds, search.index_name(tenant_id), [kb_id]))
|
|
doc_ids = []
|
|
if res.total == 0:
|
|
return doc_ids
|
|
for id in res.ids:
|
|
doc_ids = res.field[id]["source_id"]
|
|
return doc_ids
|
|
|
|
|
|
async def get_graph(tenant_id, kb_id):
|
|
conds = {
|
|
"fields": ["content_with_weight", "source_id"],
|
|
"removed_kwd": "N",
|
|
"size": 1,
|
|
"knowledge_graph_kwd": ["graph"]
|
|
}
|
|
res = await trio.to_thread.run_sync(lambda: settings.retrievaler.search(conds, search.index_name(tenant_id), [kb_id]))
|
|
if res.total == 0:
|
|
return None, []
|
|
for id in res.ids:
|
|
try:
|
|
return json_graph.node_link_graph(json.loads(res.field[id]["content_with_weight"]), edges="edges"), \
|
|
res.field[id]["source_id"]
|
|
except Exception:
|
|
continue
|
|
result = await rebuild_graph(tenant_id, kb_id)
|
|
return result
|
|
|
|
|
|
async def set_graph(tenant_id, kb_id, graph, docids):
|
|
chunk = {
|
|
"content_with_weight": json.dumps(nx.node_link_data(graph, edges="edges"), ensure_ascii=False,
|
|
indent=2),
|
|
"knowledge_graph_kwd": "graph",
|
|
"kb_id": kb_id,
|
|
"source_id": list(docids),
|
|
"available_int": 0,
|
|
"removed_kwd": "N"
|
|
}
|
|
res = await trio.to_thread.run_sync(lambda: settings.retrievaler.search({"knowledge_graph_kwd": "graph", "size": 1, "fields": []}, search.index_name(tenant_id), [kb_id]))
|
|
if res.ids:
|
|
await trio.to_thread.run_sync(lambda: settings.docStoreConn.update({"knowledge_graph_kwd": "graph"}, chunk,
|
|
search.index_name(tenant_id), kb_id))
|
|
else:
|
|
await trio.to_thread.run_sync(lambda: settings.docStoreConn.insert([{"id": chunk_id(chunk), **chunk}], search.index_name(tenant_id), kb_id))
|
|
|
|
|
|
def is_continuous_subsequence(subseq, seq):
|
|
def find_all_indexes(tup, value):
|
|
indexes = []
|
|
start = 0
|
|
while True:
|
|
try:
|
|
index = tup.index(value, start)
|
|
indexes.append(index)
|
|
start = index + 1
|
|
except ValueError:
|
|
break
|
|
return indexes
|
|
|
|
index_list = find_all_indexes(seq,subseq[0])
|
|
for idx in index_list:
|
|
if idx!=len(seq)-1:
|
|
if seq[idx+1]==subseq[-1]:
|
|
return True
|
|
return False
|
|
|
|
|
|
def merge_tuples(list1, list2):
|
|
result = []
|
|
for tup in list1:
|
|
last_element = tup[-1]
|
|
if last_element in tup[:-1]:
|
|
result.append(tup)
|
|
else:
|
|
matching_tuples = [t for t in list2 if t[0] == last_element]
|
|
already_match_flag = 0
|
|
for match in matching_tuples:
|
|
matchh = (match[1], match[0])
|
|
if is_continuous_subsequence(match, tup) or is_continuous_subsequence(matchh, tup):
|
|
continue
|
|
already_match_flag = 1
|
|
merged_tuple = tup + match[1:]
|
|
result.append(merged_tuple)
|
|
if not already_match_flag:
|
|
result.append(tup)
|
|
return result
|
|
|
|
|
|
async def update_nodes_pagerank_nhop_neighbour(tenant_id, kb_id, graph, n_hop):
|
|
def n_neighbor(id):
|
|
nonlocal graph, n_hop
|
|
count = 0
|
|
source_edge = list(graph.edges(id))
|
|
if not source_edge:
|
|
return []
|
|
count = count + 1
|
|
while count < n_hop:
|
|
count = count + 1
|
|
sc_edge = deepcopy(source_edge)
|
|
source_edge = []
|
|
for pair in sc_edge:
|
|
append_edge = list(graph.edges(pair[-1]))
|
|
for tuples in merge_tuples([pair], append_edge):
|
|
source_edge.append(tuples)
|
|
nbrs = []
|
|
for path in source_edge:
|
|
n = {"path": path, "weights": []}
|
|
wts = nx.get_edge_attributes(graph, 'weight')
|
|
for i in range(len(path)-1):
|
|
f, t = path[i], path[i+1]
|
|
n["weights"].append(wts.get((f, t), 0))
|
|
nbrs.append(n)
|
|
return nbrs
|
|
|
|
pr = nx.pagerank(graph)
|
|
for n, p in pr.items():
|
|
graph.nodes[n]["pagerank"] = p
|
|
try:
|
|
await trio.to_thread.run_sync(lambda: settings.docStoreConn.update({"entity_kwd": n, "kb_id": kb_id},
|
|
{"rank_flt": p,
|
|
"n_hop_with_weight": json.dumps( (n), ensure_ascii=False)},
|
|
search.index_name(tenant_id), kb_id))
|
|
except Exception as e:
|
|
logging.exception(e)
|
|
|
|
ty2ents = defaultdict(list)
|
|
for p, r in sorted(pr.items(), key=lambda x: x[1], reverse=True):
|
|
ty = graph.nodes[p].get("entity_type")
|
|
if not ty or len(ty2ents[ty]) > 12:
|
|
continue
|
|
ty2ents[ty].append(p)
|
|
|
|
chunk = {
|
|
"content_with_weight": json.dumps(ty2ents, ensure_ascii=False),
|
|
"kb_id": kb_id,
|
|
"knowledge_graph_kwd": "ty2ents",
|
|
"available_int": 0
|
|
}
|
|
res = await trio.to_thread.run_sync(lambda: settings.retrievaler.search({"knowledge_graph_kwd": "ty2ents", "size": 1, "fields": []},
|
|
search.index_name(tenant_id), [kb_id]))
|
|
if res.ids:
|
|
await trio.to_thread.run_sync(lambda: settings.docStoreConn.update({"knowledge_graph_kwd": "ty2ents"},
|
|
chunk,
|
|
search.index_name(tenant_id), kb_id))
|
|
else:
|
|
await trio.to_thread.run_sync(lambda: settings.docStoreConn.insert([{"id": chunk_id(chunk), **chunk}], search.index_name(tenant_id), kb_id))
|
|
|
|
|
|
async def get_entity_type2sampels(idxnms, kb_ids: list):
|
|
es_res = await trio.to_thread.run_sync(lambda: settings.retrievaler.search({"knowledge_graph_kwd": "ty2ents", "kb_id": kb_ids,
|
|
"size": 10000,
|
|
"fields": ["content_with_weight"]},
|
|
idxnms, kb_ids))
|
|
|
|
res = defaultdict(list)
|
|
for id in es_res.ids:
|
|
smp = es_res.field[id].get("content_with_weight")
|
|
if not smp:
|
|
continue
|
|
try:
|
|
smp = json.loads(smp)
|
|
except Exception as e:
|
|
logging.exception(e)
|
|
|
|
for ty, ents in smp.items():
|
|
res[ty].extend(ents)
|
|
return res
|
|
|
|
|
|
def flat_uniq_list(arr, key):
|
|
res = []
|
|
for a in arr:
|
|
a = a[key]
|
|
if isinstance(a, list):
|
|
res.extend(a)
|
|
else:
|
|
res.append(a)
|
|
return list(set(res))
|
|
|
|
|
|
async def rebuild_graph(tenant_id, kb_id):
|
|
graph = nx.Graph()
|
|
src_ids = []
|
|
flds = ["entity_kwd", "entity_type_kwd", "from_entity_kwd", "to_entity_kwd", "weight_int", "knowledge_graph_kwd", "source_id"]
|
|
bs = 256
|
|
for i in range(0, 39*bs, bs):
|
|
es_res = await trio.to_thread.run_sync(lambda: settings.docStoreConn.search(flds, [],
|
|
{"kb_id": kb_id, "knowledge_graph_kwd": ["entity", "relation"]},
|
|
[],
|
|
OrderByExpr(),
|
|
i, bs, search.index_name(tenant_id), [kb_id]
|
|
))
|
|
tot = settings.docStoreConn.getTotal(es_res)
|
|
if tot == 0:
|
|
return None, None
|
|
|
|
es_res = settings.docStoreConn.getFields(es_res, flds)
|
|
for id, d in es_res.items():
|
|
src_ids.extend(d.get("source_id", []))
|
|
if d["knowledge_graph_kwd"] == "entity":
|
|
graph.add_node(d["entity_kwd"], entity_type=d["entity_type_kwd"])
|
|
elif "from_entity_kwd" in d and "to_entity_kwd" in d:
|
|
graph.add_edge(
|
|
d["from_entity_kwd"],
|
|
d["to_entity_kwd"],
|
|
weight=int(d["weight_int"])
|
|
)
|
|
|
|
if len(es_res.keys()) < 128:
|
|
return graph, list(set(src_ids))
|
|
|
|
return graph, list(set(src_ids))
|