ragflow/rag/app/qa.py
Zhedong Cen 7920a5c78d
Add markdown support for QA parser (#1180)
### What problem does this PR solve?

Add markdown support for QA parser

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2024-06-18 09:45:13 +08:00

293 lines
12 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
from copy import deepcopy
from io import BytesIO
from timeit import default_timer as timer
from nltk import word_tokenize
from openpyxl import load_workbook
from rag.nlp import is_english, random_choices, find_codec, qbullets_category, add_positions, has_qbullet
from rag.nlp import rag_tokenizer, tokenize_table
from rag.settings import cron_logger
from deepdoc.parser import PdfParser, ExcelParser
class Excel(ExcelParser):
def __call__(self, fnm, binary=None, callback=None):
if not binary:
wb = load_workbook(fnm)
else:
wb = load_workbook(BytesIO(binary))
total = 0
for sheetname in wb.sheetnames:
total += len(list(wb[sheetname].rows))
res, fails = [], []
for sheetname in wb.sheetnames:
ws = wb[sheetname]
rows = list(ws.rows)
for i, r in enumerate(rows):
q, a = "", ""
for cell in r:
if not cell.value:
continue
if not q:
q = str(cell.value)
elif not a:
a = str(cell.value)
else:
break
if q and a:
res.append((q, a))
else:
fails.append(str(i + 1))
if len(res) % 999 == 0:
callback(len(res) *
0.6 /
total, ("Extract Q&A: {}".format(len(res)) +
(f"{len(fails)} failure, line: %s..." %
(",".join(fails[:3])) if fails else "")))
callback(0.6, ("Extract Q&A: {}. ".format(len(res)) + (
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
self.is_english = is_english(
[rmPrefix(q) for q, _ in random_choices(res, k=30) if len(q) > 1])
return res
class Pdf(PdfParser):
def __call__(self, filename, binary=None, from_page=0,
to_page=100000, zoomin=3, callback=None):
start = timer()
callback(msg="OCR is running...")
self.__images__(
filename if not binary else binary,
zoomin,
from_page,
to_page,
callback
)
callback(msg="OCR finished")
cron_logger.info("OCR({}~{}): {}".format(from_page, to_page, timer() - start))
start = timer()
self._layouts_rec(zoomin, drop=False)
callback(0.63, "Layout analysis finished.")
self._table_transformer_job(zoomin)
callback(0.65, "Table analysis finished.")
self._text_merge()
callback(0.67, "Text merging finished")
tbls = self._extract_table_figure(True, zoomin, True, True)
#self._naive_vertical_merge()
# self._concat_downward()
#self._filter_forpages()
cron_logger.info("layouts: {}".format(timer() - start))
sections = [b["text"] for b in self.boxes]
bull_x0_list = []
q_bull, reg = qbullets_category(sections)
if q_bull == -1:
raise ValueError("Unable to recognize Q&A structure.")
qai_list = []
last_q, last_a, last_tag = '', '', ''
last_index = -1
last_box = {'text':''}
last_bull = None
for box in self.boxes:
section, line_tag = box['text'], self._line_tag(box, zoomin)
has_bull, index = has_qbullet(reg, box, last_box, last_index, last_bull, bull_x0_list)
last_box, last_index, last_bull = box, index, has_bull
if not has_bull: # No question bullet
if not last_q:
continue
else:
last_a = f'{last_a}{section}'
last_tag = f'{last_tag}{line_tag}'
else:
if last_q:
qai_list.append((last_q, last_a, *self.crop(last_tag, need_position=True)))
last_q, last_a, last_tag = '', '', ''
last_q = has_bull.group()
_, end = has_bull.span()
last_a = section[end:]
last_tag = line_tag
if last_q:
qai_list.append((last_q, last_a, *self.crop(last_tag, need_position=True)))
return qai_list, tbls
def rmPrefix(txt):
return re.sub(
r"^(问题|答案|回答|user|assistant|Q|A|Question|Answer|问|答)[\t: ]+", "", txt.strip(), flags=re.IGNORECASE)
def beAdocPdf(d, q, a, eng, image, poss):
qprefix = "Question: " if eng else "问题:"
aprefix = "Answer: " if eng else "回答:"
d["content_with_weight"] = "\t".join(
[qprefix + rmPrefix(q), aprefix + rmPrefix(a)])
d["content_ltks"] = rag_tokenizer.tokenize(q)
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
d["image"] = image
add_positions(d, poss)
return d
def beAdoc(d, q, a, eng):
qprefix = "Question: " if eng else "问题:"
aprefix = "Answer: " if eng else "回答:"
d["content_with_weight"] = "\t".join(
[qprefix + rmPrefix(q), aprefix + rmPrefix(a)])
d["content_ltks"] = rag_tokenizer.tokenize(q)
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
return d
def mdQuestionLevel(s):
match = re.match(r'#*', s)
return (len(match.group(0)), s.lstrip('#').lstrip()) if match else (0, s)
def chunk(filename, binary=None, lang="Chinese", callback=None, **kwargs):
"""
Excel and csv(txt) format files are supported.
If the file is in excel format, there should be 2 column question and answer without header.
And question column is ahead of answer column.
And it's O.K if it has multiple sheets as long as the columns are rightly composed.
If it's in csv format, it should be UTF-8 encoded. Use TAB as delimiter to separate question and answer.
All the deformed lines will be ignored.
Every pair of Q&A will be treated as a chunk.
"""
eng = lang.lower() == "english"
res = []
doc = {
"docnm_kwd": filename,
"title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))
}
if re.search(r"\.xlsx?$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
excel_parser = Excel()
for q, a in excel_parser(filename, binary, callback):
res.append(beAdoc(deepcopy(doc), q, a, eng))
return res
elif re.search(r"\.(txt|csv)$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
txt = ""
if binary:
encoding = find_codec(binary)
txt = binary.decode(encoding, errors="ignore")
else:
with open(filename, "r") as f:
while True:
l = f.readline()
if not l:
break
txt += l
lines = txt.split("\n")
comma, tab = 0, 0
for l in lines:
if len(l.split(",")) == 2: comma += 1
if len(l.split("\t")) == 2: tab += 1
delimiter = "\t" if tab >= comma else ","
fails = []
question, answer = "", ""
i = 0
while i < len(lines):
arr = lines[i].split(delimiter)
if len(arr) != 2:
if question: answer += "\n" + lines[i]
else:
fails.append(str(i+1))
elif len(arr) == 2:
if question and answer: res.append(beAdoc(deepcopy(doc), question, answer, eng))
question, answer = arr
i += 1
if len(res) % 999 == 0:
callback(len(res) * 0.6 / len(lines), ("Extract Q&A: {}".format(len(res)) + (
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
if question: res.append(beAdoc(deepcopy(doc), question, answer, eng))
callback(0.6, ("Extract Q&A: {}".format(len(res)) + (
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
return res
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
pdf_parser = Pdf()
count = 0
qai_list, tbls = pdf_parser(filename if not binary else binary,
from_page=0, to_page=10000, callback=callback)
res = tokenize_table(tbls, doc, eng)
for q, a, image, poss in qai_list:
count += 1
res.append(beAdocPdf(deepcopy(doc), q, a, eng, image, poss))
return res
elif re.search(r"\.(md|markdown)$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
txt = ""
if binary:
encoding = find_codec(binary)
txt = binary.decode(encoding, errors="ignore")
else:
with open(filename, "r") as f:
while True:
l = f.readline()
if not l:
break
txt += l
lines = txt.split("\n")
comma, tab = 0, 0
last_question, last_answer = "", ""
question_stack, level_stack = [], []
code_block = False
level_index = [-1] * 7
for index, l in enumerate(lines):
if not l.strip():
continue
if l.strip().startswith('```'):
code_block = not code_block
question_level, question = 0, ''
if not code_block:
question_level, question = mdQuestionLevel(l)
if not question_level or question_level > 6: # not a question
last_answer = f'{last_answer}\n{l}'
else: # is a question
if last_answer:
sum_question = ('\n').join(question_stack)
if sum_question:
res.append(beAdoc(deepcopy(doc), sum_question, last_answer, eng))
last_answer = ''
i = question_level
while question_stack and i <= level_stack[-1]:
question_stack.pop()
level_stack.pop()
question_stack.append(question)
level_stack.append(question_level)
if last_answer:
sum_question = ('\n').join(question_stack)
if sum_question:
res.append(beAdoc(deepcopy(doc), sum_question, last_answer, eng))
return res
raise NotImplementedError(
"Excel, csv(txt), pdf and markdown format files are supported.")
if __name__ == "__main__":
import sys
def dummy(prog=None, msg=""):
pass
chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy)