mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-21 13:40:00 +08:00

### What problem does this PR solve? Removed set_entity and set_relation to avoid accessing doc engine during graph computation. Introduced GraphChange to avoid writing unchanged chunks. ### Type of change - [x] Performance Improvement
125 lines
5.4 KiB
Python
125 lines
5.4 KiB
Python
# Copyright (c) 2024 Microsoft Corporation.
|
|
# Licensed under the MIT License
|
|
"""
|
|
Reference:
|
|
- [graphrag](https://github.com/microsoft/graphrag)
|
|
"""
|
|
import re
|
|
from typing import Any
|
|
from dataclasses import dataclass
|
|
from graphrag.general.extractor import Extractor, ENTITY_EXTRACTION_MAX_GLEANINGS
|
|
from graphrag.light.graph_prompt import PROMPTS
|
|
from graphrag.utils import pack_user_ass_to_openai_messages, split_string_by_multi_markers, chat_limiter
|
|
from rag.llm.chat_model import Base as CompletionLLM
|
|
import networkx as nx
|
|
from rag.utils import num_tokens_from_string
|
|
import trio
|
|
|
|
|
|
@dataclass
|
|
class GraphExtractionResult:
|
|
"""Unipartite graph extraction result class definition."""
|
|
|
|
output: nx.Graph
|
|
source_docs: dict[Any, Any]
|
|
|
|
|
|
class GraphExtractor(Extractor):
|
|
|
|
_max_gleanings: int
|
|
|
|
def __init__(
|
|
self,
|
|
llm_invoker: CompletionLLM,
|
|
language: str | None = "English",
|
|
entity_types: list[str] | None = None,
|
|
example_number: int = 2,
|
|
max_gleanings: int | None = None,
|
|
):
|
|
super().__init__(llm_invoker, language, entity_types)
|
|
"""Init method definition."""
|
|
self._max_gleanings = (
|
|
max_gleanings
|
|
if max_gleanings is not None
|
|
else ENTITY_EXTRACTION_MAX_GLEANINGS
|
|
)
|
|
self._example_number = example_number
|
|
examples = "\n".join(
|
|
PROMPTS["entity_extraction_examples"][: int(self._example_number)]
|
|
)
|
|
|
|
example_context_base = dict(
|
|
tuple_delimiter=PROMPTS["DEFAULT_TUPLE_DELIMITER"],
|
|
record_delimiter=PROMPTS["DEFAULT_RECORD_DELIMITER"],
|
|
completion_delimiter=PROMPTS["DEFAULT_COMPLETION_DELIMITER"],
|
|
entity_types=",".join(self._entity_types),
|
|
language=self._language,
|
|
)
|
|
# add example's format
|
|
examples = examples.format(**example_context_base)
|
|
|
|
self._entity_extract_prompt = PROMPTS["entity_extraction"]
|
|
self._context_base = dict(
|
|
tuple_delimiter=PROMPTS["DEFAULT_TUPLE_DELIMITER"],
|
|
record_delimiter=PROMPTS["DEFAULT_RECORD_DELIMITER"],
|
|
completion_delimiter=PROMPTS["DEFAULT_COMPLETION_DELIMITER"],
|
|
entity_types=",".join(self._entity_types),
|
|
examples=examples,
|
|
language=self._language,
|
|
)
|
|
|
|
self._continue_prompt = PROMPTS["entiti_continue_extraction"]
|
|
self._if_loop_prompt = PROMPTS["entiti_if_loop_extraction"]
|
|
|
|
self._left_token_count = llm_invoker.max_length - num_tokens_from_string(
|
|
self._entity_extract_prompt.format(
|
|
**self._context_base, input_text="{input_text}"
|
|
).format(**self._context_base, input_text="")
|
|
)
|
|
self._left_token_count = max(llm_invoker.max_length * 0.6, self._left_token_count)
|
|
|
|
async def _process_single_content(self, chunk_key_dp: tuple[str, str], chunk_seq: int, num_chunks: int, out_results):
|
|
token_count = 0
|
|
chunk_key = chunk_key_dp[0]
|
|
content = chunk_key_dp[1]
|
|
hint_prompt = self._entity_extract_prompt.format(
|
|
**self._context_base, input_text="{input_text}"
|
|
).format(**self._context_base, input_text=content)
|
|
|
|
gen_conf = {"temperature": 0.8}
|
|
async with chat_limiter:
|
|
final_result = await trio.to_thread.run_sync(lambda: self._chat(hint_prompt, [{"role": "user", "content": "Output:"}], gen_conf))
|
|
token_count += num_tokens_from_string(hint_prompt + final_result)
|
|
history = pack_user_ass_to_openai_messages("Output:", final_result, self._continue_prompt)
|
|
for now_glean_index in range(self._max_gleanings):
|
|
async with chat_limiter:
|
|
glean_result = await trio.to_thread.run_sync(lambda: self._chat(hint_prompt, history, gen_conf))
|
|
history.extend([{"role": "assistant", "content": glean_result}, {"role": "user", "content": self._continue_prompt}])
|
|
token_count += num_tokens_from_string("\n".join([m["content"] for m in history]) + hint_prompt + self._continue_prompt)
|
|
final_result += glean_result
|
|
if now_glean_index == self._max_gleanings - 1:
|
|
break
|
|
|
|
async with chat_limiter:
|
|
if_loop_result = await trio.to_thread.run_sync(lambda: self._chat(self._if_loop_prompt, history, gen_conf))
|
|
token_count += num_tokens_from_string("\n".join([m["content"] for m in history]) + if_loop_result + self._if_loop_prompt)
|
|
if_loop_result = if_loop_result.strip().strip('"').strip("'").lower()
|
|
if if_loop_result != "yes":
|
|
break
|
|
|
|
records = split_string_by_multi_markers(
|
|
final_result,
|
|
[self._context_base["record_delimiter"], self._context_base["completion_delimiter"]],
|
|
)
|
|
rcds = []
|
|
for record in records:
|
|
record = re.search(r"\((.*)\)", record)
|
|
if record is None:
|
|
continue
|
|
rcds.append(record.group(1))
|
|
records = rcds
|
|
maybe_nodes, maybe_edges = self._entities_and_relations(chunk_key, records, self._context_base["tuple_delimiter"])
|
|
out_results.append((maybe_nodes, maybe_edges, token_count))
|
|
if self.callback:
|
|
self.callback(0.5+0.1*len(out_results)/num_chunks, msg = f"Entities extraction of chunk {chunk_seq} {len(out_results)}/{num_chunks} done, {len(maybe_nodes)} nodes, {len(maybe_edges)} edges, {token_count} tokens.")
|