KevinHuSh 7fd1eca582
init README of deepdoc, add picture processer. (#71)
* init README of deepdoc, add picture processer.

* add resume parsing
2024-02-23 18:28:12 +08:00

81 lines
2.8 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import re,json,os
import pandas as pd
from rag.nlp import huqie
from . import regions
current_file_path = os.path.dirname(os.path.abspath(__file__))
GOODS = pd.read_csv(os.path.join(current_file_path, "res/corp_baike_len.csv"), sep="\t", header=0).fillna(0)
GOODS["cid"] = GOODS["cid"].astype(str)
GOODS = GOODS.set_index(["cid"])
CORP_TKS = json.load(open(os.path.join(current_file_path, "res/corp.tks.freq.json"), "r"))
GOOD_CORP = json.load(open(os.path.join(current_file_path, "res/good_corp.json"), "r"))
CORP_TAG = json.load(open(os.path.join(current_file_path, "res/corp_tag.json"), "r"))
def baike(cid, default_v=0):
global GOODS
try:
return GOODS.loc[str(cid), "len"]
except Exception as e:
pass
return default_v
def corpNorm(nm, add_region=True):
global CORP_TKS
if not nm or type(nm)!=type(""):return ""
nm = huqie.tradi2simp(huqie.strQ2B(nm)).lower()
nm = re.sub(r"&", "&", nm)
nm = re.sub(r"[\(\)\+'\"\t \*\\【】-]+", " ", nm)
nm = re.sub(r"([—-]+.*| +co\..*|corp\..*| +inc\..*| +ltd.*)", "", nm, 10000, re.IGNORECASE)
nm = re.sub(r"(计算机|技术|(技术|科技|网络)*有限公司|公司|有限|研发中心|中国|总部)$", "", nm, 10000, re.IGNORECASE)
if not nm or (len(nm)<5 and not regions.isName(nm[0:2])):return nm
tks = huqie.qie(nm).split(" ")
reg = [t for i,t in enumerate(tks) if regions.isName(t) and (t != "中国" or i > 0)]
nm = ""
for t in tks:
if regions.isName(t) or t in CORP_TKS:continue
if re.match(r"[0-9a-zA-Z\\,.]+", t) and re.match(r".*[0-9a-zA-Z\,.]+$", nm):nm += " "
nm += t
r = re.search(r"^([^a-z0-9 \(\)&]{2,})[a-z ]{4,}$", nm.strip())
if r:nm = r.group(1)
r = re.search(r"^([a-z ]{3,})[^a-z0-9 \(\)&]{2,}$", nm.strip())
if r:nm = r.group(1)
return nm.strip() + (("" if not reg else "(%s)"%reg[0]) if add_region else "")
def rmNoise(n):
n = re.sub(r"[\(][^()]+[)]", "", n)
n = re.sub(r"[,. &()]+", "", n)
return n
GOOD_CORP = set([corpNorm(rmNoise(c), False) for c in GOOD_CORP])
for c,v in CORP_TAG.items():
cc = corpNorm(rmNoise(c), False)
if not cc: print (c)
CORP_TAG = {corpNorm(rmNoise(c), False):v for c,v in CORP_TAG.items()}
def is_good(nm):
global GOOD_CORP
if nm.find("外派")>=0:return False
nm = rmNoise(nm)
nm = corpNorm(nm, False)
for n in GOOD_CORP:
if re.match(r"[0-9a-zA-Z]+$", n):
if n == nm: return True
elif nm.find(n)>=0:return True
return False
def corp_tag(nm):
global CORP_TAG
nm = rmNoise(nm)
nm = corpNorm(nm, False)
for n in CORP_TAG.keys():
if re.match(r"[0-9a-zA-Z., ]+$", n):
if n == nm: return CORP_TAG[n]
elif nm.find(n)>=0:
if len(n)<3 and len(nm)/len(n)>=2:continue
return CORP_TAG[n]
return []