mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-22 14:10:01 +08:00

### What problem does this PR solve? #6421 ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue)
1024 lines
38 KiB
Python
1024 lines
38 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import base64
|
|
import io
|
|
import json
|
|
import os
|
|
from abc import ABC
|
|
from io import BytesIO
|
|
|
|
import requests
|
|
from ollama import Client
|
|
from openai import OpenAI
|
|
from openai.lib.azure import AzureOpenAI
|
|
from PIL import Image
|
|
from zhipuai import ZhipuAI
|
|
|
|
from api.utils import get_uuid
|
|
from api.utils.file_utils import get_project_base_directory
|
|
from rag.nlp import is_english
|
|
from rag.prompts import vision_llm_describe_prompt
|
|
from rag.utils import num_tokens_from_string
|
|
|
|
|
|
class Base(ABC):
|
|
def __init__(self, key, model_name):
|
|
pass
|
|
|
|
def describe(self, image):
|
|
raise NotImplementedError("Please implement encode method!")
|
|
|
|
def describe_with_prompt(self, image, prompt=None):
|
|
raise NotImplementedError("Please implement encode method!")
|
|
|
|
def chat(self, system, history, gen_conf, image=""):
|
|
if system:
|
|
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
|
|
try:
|
|
for his in history:
|
|
if his["role"] == "user":
|
|
his["content"] = self.chat_prompt(his["content"], image)
|
|
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
temperature=gen_conf.get("temperature", 0.3),
|
|
top_p=gen_conf.get("top_p", 0.7)
|
|
)
|
|
return response.choices[0].message.content.strip(), response.usage.total_tokens
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf, image=""):
|
|
if system:
|
|
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
|
|
|
|
ans = ""
|
|
tk_count = 0
|
|
try:
|
|
for his in history:
|
|
if his["role"] == "user":
|
|
his["content"] = self.chat_prompt(his["content"], image)
|
|
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
temperature=gen_conf.get("temperature", 0.3),
|
|
top_p=gen_conf.get("top_p", 0.7),
|
|
stream=True
|
|
)
|
|
for resp in response:
|
|
if not resp.choices[0].delta.content:
|
|
continue
|
|
delta = resp.choices[0].delta.content
|
|
ans += delta
|
|
if resp.choices[0].finish_reason == "length":
|
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
|
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
tk_count = resp.usage.total_tokens
|
|
if resp.choices[0].finish_reason == "stop":
|
|
tk_count = resp.usage.total_tokens
|
|
yield ans
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield tk_count
|
|
|
|
def image2base64(self, image):
|
|
if isinstance(image, bytes):
|
|
return base64.b64encode(image).decode("utf-8")
|
|
if isinstance(image, BytesIO):
|
|
return base64.b64encode(image.getvalue()).decode("utf-8")
|
|
buffered = BytesIO()
|
|
try:
|
|
image.save(buffered, format="JPEG")
|
|
except Exception:
|
|
image.save(buffered, format="PNG")
|
|
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
|
|
|
def prompt(self, b64):
|
|
return [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": f"data:image/jpeg;base64,{b64}"
|
|
},
|
|
},
|
|
{
|
|
"text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else
|
|
"Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
|
|
},
|
|
],
|
|
}
|
|
]
|
|
|
|
def vision_llm_prompt(self, b64, prompt=None):
|
|
return [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": f"data:image/jpeg;base64,{b64}"
|
|
},
|
|
},
|
|
{
|
|
"type": "text",
|
|
"text": prompt if prompt else vision_llm_describe_prompt(),
|
|
},
|
|
],
|
|
}
|
|
]
|
|
|
|
def chat_prompt(self, text, b64):
|
|
return [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": f"data:image/jpeg;base64,{b64}",
|
|
},
|
|
},
|
|
{
|
|
"type": "text",
|
|
"text": text
|
|
},
|
|
]
|
|
|
|
|
|
class GptV4(Base):
|
|
def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese", base_url="https://api.openai.com/v1"):
|
|
if not base_url:
|
|
base_url = "https://api.openai.com/v1"
|
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
|
self.model_name = model_name
|
|
self.lang = lang
|
|
|
|
def describe(self, image):
|
|
b64 = self.image2base64(image)
|
|
prompt = self.prompt(b64)
|
|
for i in range(len(prompt)):
|
|
for c in prompt[i]["content"]:
|
|
if "text" in c:
|
|
c["type"] = "text"
|
|
|
|
res = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=prompt
|
|
)
|
|
return res.choices[0].message.content.strip(), res.usage.total_tokens
|
|
|
|
def describe_with_prompt(self, image, prompt=None):
|
|
b64 = self.image2base64(image)
|
|
vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
|
|
|
|
res = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=vision_prompt,
|
|
)
|
|
return res.choices[0].message.content.strip(), res.usage.total_tokens
|
|
|
|
|
|
class AzureGptV4(Base):
|
|
def __init__(self, key, model_name, lang="Chinese", **kwargs):
|
|
api_key = json.loads(key).get('api_key', '')
|
|
api_version = json.loads(key).get('api_version', '2024-02-01')
|
|
self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
|
|
self.model_name = model_name
|
|
self.lang = lang
|
|
|
|
def describe(self, image):
|
|
b64 = self.image2base64(image)
|
|
prompt = self.prompt(b64)
|
|
for i in range(len(prompt)):
|
|
for c in prompt[i]["content"]:
|
|
if "text" in c:
|
|
c["type"] = "text"
|
|
|
|
res = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=prompt
|
|
)
|
|
return res.choices[0].message.content.strip(), res.usage.total_tokens
|
|
|
|
def describe_with_prompt(self, image, prompt=None):
|
|
b64 = self.image2base64(image)
|
|
vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
|
|
|
|
res = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=vision_prompt,
|
|
)
|
|
return res.choices[0].message.content.strip(), res.usage.total_tokens
|
|
|
|
|
|
class QWenCV(Base):
|
|
def __init__(self, key, model_name="qwen-vl-chat-v1", lang="Chinese", **kwargs):
|
|
import dashscope
|
|
dashscope.api_key = key
|
|
self.model_name = model_name
|
|
self.lang = lang
|
|
|
|
def prompt(self, binary):
|
|
# stupid as hell
|
|
tmp_dir = get_project_base_directory("tmp")
|
|
if not os.path.exists(tmp_dir):
|
|
os.mkdir(tmp_dir)
|
|
path = os.path.join(tmp_dir, "%s.jpg" % get_uuid())
|
|
Image.open(io.BytesIO(binary)).save(path)
|
|
return [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"image": f"file://{path}"
|
|
},
|
|
{
|
|
"text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else
|
|
"Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
|
|
},
|
|
],
|
|
}
|
|
]
|
|
|
|
def vision_llm_prompt(self, binary, prompt=None):
|
|
# stupid as hell
|
|
tmp_dir = get_project_base_directory("tmp")
|
|
if not os.path.exists(tmp_dir):
|
|
os.mkdir(tmp_dir)
|
|
path = os.path.join(tmp_dir, "%s.jpg" % get_uuid())
|
|
Image.open(io.BytesIO(binary)).save(path)
|
|
|
|
return [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"image": f"file://{path}"
|
|
},
|
|
{
|
|
"text": prompt if prompt else vision_llm_describe_prompt(),
|
|
},
|
|
],
|
|
}
|
|
]
|
|
|
|
def chat_prompt(self, text, b64):
|
|
return [
|
|
{"image": f"{b64}"},
|
|
{"text": text},
|
|
]
|
|
|
|
def describe(self, image):
|
|
from http import HTTPStatus
|
|
|
|
from dashscope import MultiModalConversation
|
|
response = MultiModalConversation.call(model=self.model_name, messages=self.prompt(image))
|
|
if response.status_code == HTTPStatus.OK:
|
|
return response.output.choices[0]['message']['content'][0]["text"], response.usage.output_tokens
|
|
return response.message, 0
|
|
|
|
def describe_with_prompt(self, image, prompt=None):
|
|
from http import HTTPStatus
|
|
|
|
from dashscope import MultiModalConversation
|
|
|
|
vision_prompt = self.vision_llm_prompt(image, prompt) if prompt else self.vision_llm_prompt(image)
|
|
response = MultiModalConversation.call(model=self.model_name, messages=vision_prompt)
|
|
if response.status_code == HTTPStatus.OK:
|
|
return response.output.choices[0]['message']['content'][0]["text"], response.usage.output_tokens
|
|
return response.message, 0
|
|
|
|
def chat(self, system, history, gen_conf, image=""):
|
|
from http import HTTPStatus
|
|
|
|
from dashscope import MultiModalConversation
|
|
if system:
|
|
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
|
|
|
|
for his in history:
|
|
if his["role"] == "user":
|
|
his["content"] = self.chat_prompt(his["content"], image)
|
|
response = MultiModalConversation.call(model=self.model_name, messages=history,
|
|
temperature=gen_conf.get("temperature", 0.3),
|
|
top_p=gen_conf.get("top_p", 0.7))
|
|
|
|
ans = ""
|
|
tk_count = 0
|
|
if response.status_code == HTTPStatus.OK:
|
|
ans += response.output.choices[0]['message']['content']
|
|
tk_count += response.usage.total_tokens
|
|
if response.output.choices[0].get("finish_reason", "") == "length":
|
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
|
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
return ans, tk_count
|
|
|
|
return "**ERROR**: " + response.message, tk_count
|
|
|
|
def chat_streamly(self, system, history, gen_conf, image=""):
|
|
from http import HTTPStatus
|
|
|
|
from dashscope import MultiModalConversation
|
|
if system:
|
|
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
|
|
|
|
for his in history:
|
|
if his["role"] == "user":
|
|
his["content"] = self.chat_prompt(his["content"], image)
|
|
|
|
ans = ""
|
|
tk_count = 0
|
|
try:
|
|
response = MultiModalConversation.call(model=self.model_name, messages=history,
|
|
temperature=gen_conf.get("temperature", 0.3),
|
|
top_p=gen_conf.get("top_p", 0.7),
|
|
stream=True)
|
|
for resp in response:
|
|
if resp.status_code == HTTPStatus.OK:
|
|
ans = resp.output.choices[0]['message']['content']
|
|
tk_count = resp.usage.total_tokens
|
|
if resp.output.choices[0].get("finish_reason", "") == "length":
|
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
|
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
yield ans
|
|
else:
|
|
yield ans + "\n**ERROR**: " + resp.message if str(resp.message).find(
|
|
"Access") < 0 else "Out of credit. Please set the API key in **settings > Model providers.**"
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield tk_count
|
|
|
|
|
|
class Zhipu4V(Base):
|
|
def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
|
|
self.client = ZhipuAI(api_key=key)
|
|
self.model_name = model_name
|
|
self.lang = lang
|
|
|
|
def describe(self, image):
|
|
b64 = self.image2base64(image)
|
|
|
|
prompt = self.prompt(b64)
|
|
prompt[0]["content"][1]["type"] = "text"
|
|
|
|
res = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=prompt,
|
|
)
|
|
return res.choices[0].message.content.strip(), res.usage.total_tokens
|
|
|
|
def describe_with_prompt(self, image, prompt=None):
|
|
b64 = self.image2base64(image)
|
|
vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
|
|
|
|
res = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=vision_prompt
|
|
)
|
|
return res.choices[0].message.content.strip(), res.usage.total_tokens
|
|
|
|
def chat(self, system, history, gen_conf, image=""):
|
|
if system:
|
|
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
|
|
try:
|
|
for his in history:
|
|
if his["role"] == "user":
|
|
his["content"] = self.chat_prompt(his["content"], image)
|
|
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
temperature=gen_conf.get("temperature", 0.3),
|
|
top_p=gen_conf.get("top_p", 0.7)
|
|
)
|
|
return response.choices[0].message.content.strip(), response.usage.total_tokens
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf, image=""):
|
|
if system:
|
|
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
|
|
|
|
ans = ""
|
|
tk_count = 0
|
|
try:
|
|
for his in history:
|
|
if his["role"] == "user":
|
|
his["content"] = self.chat_prompt(his["content"], image)
|
|
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
temperature=gen_conf.get("temperature", 0.3),
|
|
top_p=gen_conf.get("top_p", 0.7),
|
|
stream=True
|
|
)
|
|
for resp in response:
|
|
if not resp.choices[0].delta.content:
|
|
continue
|
|
delta = resp.choices[0].delta.content
|
|
ans += delta
|
|
if resp.choices[0].finish_reason == "length":
|
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
|
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
tk_count = resp.usage.total_tokens
|
|
if resp.choices[0].finish_reason == "stop":
|
|
tk_count = resp.usage.total_tokens
|
|
yield ans
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield tk_count
|
|
|
|
|
|
class OllamaCV(Base):
|
|
def __init__(self, key, model_name, lang="Chinese", **kwargs):
|
|
self.client = Client(host=kwargs["base_url"])
|
|
self.model_name = model_name
|
|
self.lang = lang
|
|
|
|
def describe(self, image):
|
|
prompt = self.prompt("")
|
|
try:
|
|
response = self.client.generate(
|
|
model=self.model_name,
|
|
prompt=prompt[0]["content"][1]["text"],
|
|
images=[image]
|
|
)
|
|
ans = response["response"].strip()
|
|
return ans, 128
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def describe_with_prompt(self, image, prompt=None):
|
|
vision_prompt = self.vision_llm_prompt("", prompt) if prompt else self.vision_llm_prompt("")
|
|
try:
|
|
response = self.client.generate(
|
|
model=self.model_name,
|
|
prompt=vision_prompt[0]["content"][1]["text"],
|
|
images=[image],
|
|
)
|
|
ans = response["response"].strip()
|
|
return ans, 128
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat(self, system, history, gen_conf, image=""):
|
|
if system:
|
|
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
|
|
|
|
try:
|
|
for his in history:
|
|
if his["role"] == "user":
|
|
his["images"] = [image]
|
|
options = {}
|
|
if "temperature" in gen_conf:
|
|
options["temperature"] = gen_conf["temperature"]
|
|
if "top_p" in gen_conf:
|
|
options["top_k"] = gen_conf["top_p"]
|
|
if "presence_penalty" in gen_conf:
|
|
options["presence_penalty"] = gen_conf["presence_penalty"]
|
|
if "frequency_penalty" in gen_conf:
|
|
options["frequency_penalty"] = gen_conf["frequency_penalty"]
|
|
response = self.client.chat(
|
|
model=self.model_name,
|
|
messages=history,
|
|
options=options,
|
|
keep_alive=-1
|
|
)
|
|
|
|
ans = response["message"]["content"].strip()
|
|
return ans, response["eval_count"] + response.get("prompt_eval_count", 0)
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf, image=""):
|
|
if system:
|
|
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
|
|
|
|
for his in history:
|
|
if his["role"] == "user":
|
|
his["images"] = [image]
|
|
options = {}
|
|
if "temperature" in gen_conf:
|
|
options["temperature"] = gen_conf["temperature"]
|
|
if "top_p" in gen_conf:
|
|
options["top_k"] = gen_conf["top_p"]
|
|
if "presence_penalty" in gen_conf:
|
|
options["presence_penalty"] = gen_conf["presence_penalty"]
|
|
if "frequency_penalty" in gen_conf:
|
|
options["frequency_penalty"] = gen_conf["frequency_penalty"]
|
|
ans = ""
|
|
try:
|
|
response = self.client.chat(
|
|
model=self.model_name,
|
|
messages=history,
|
|
stream=True,
|
|
options=options,
|
|
keep_alive=-1
|
|
)
|
|
for resp in response:
|
|
if resp["done"]:
|
|
yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
|
|
ans += resp["message"]["content"]
|
|
yield ans
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
yield 0
|
|
|
|
|
|
class LocalAICV(GptV4):
|
|
def __init__(self, key, model_name, base_url, lang="Chinese"):
|
|
if not base_url:
|
|
raise ValueError("Local cv model url cannot be None")
|
|
if base_url.split("/")[-1] != "v1":
|
|
base_url = os.path.join(base_url, "v1")
|
|
self.client = OpenAI(api_key="empty", base_url=base_url)
|
|
self.model_name = model_name.split("___")[0]
|
|
self.lang = lang
|
|
|
|
|
|
class XinferenceCV(Base):
|
|
def __init__(self, key, model_name="", lang="Chinese", base_url=""):
|
|
if base_url.split("/")[-1] != "v1":
|
|
base_url = os.path.join(base_url, "v1")
|
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
|
self.model_name = model_name
|
|
self.lang = lang
|
|
|
|
def describe(self, image):
|
|
b64 = self.image2base64(image)
|
|
|
|
res = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=self.prompt(b64)
|
|
)
|
|
return res.choices[0].message.content.strip(), res.usage.total_tokens
|
|
|
|
def describe_with_prompt(self, image, prompt=None):
|
|
b64 = self.image2base64(image)
|
|
vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
|
|
|
|
res = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=vision_prompt,
|
|
)
|
|
return res.choices[0].message.content.strip(), res.usage.total_tokens
|
|
|
|
|
|
class GeminiCV(Base):
|
|
def __init__(self, key, model_name="gemini-1.0-pro-vision-latest", lang="Chinese", **kwargs):
|
|
from google.generativeai import GenerativeModel, client
|
|
client.configure(api_key=key)
|
|
_client = client.get_default_generative_client()
|
|
self.model_name = model_name
|
|
self.model = GenerativeModel(model_name=self.model_name)
|
|
self.model._client = _client
|
|
self.lang = lang
|
|
|
|
def describe(self, image):
|
|
from PIL.Image import open
|
|
prompt = "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else \
|
|
"Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
|
|
b64 = self.image2base64(image)
|
|
img = open(BytesIO(base64.b64decode(b64)))
|
|
input = [prompt, img]
|
|
res = self.model.generate_content(
|
|
input
|
|
)
|
|
return res.text, res.usage_metadata.total_token_count
|
|
|
|
def describe_with_prompt(self, image, prompt=None):
|
|
from PIL.Image import open
|
|
b64 = self.image2base64(image)
|
|
vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
|
|
img = open(BytesIO(base64.b64decode(b64)))
|
|
input = [vision_prompt, img]
|
|
res = self.model.generate_content(
|
|
input,
|
|
)
|
|
return res.text, res.usage_metadata.total_token_count
|
|
|
|
def chat(self, system, history, gen_conf, image=""):
|
|
from transformers import GenerationConfig
|
|
if system:
|
|
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
|
|
try:
|
|
for his in history:
|
|
if his["role"] == "assistant":
|
|
his["role"] = "model"
|
|
his["parts"] = [his["content"]]
|
|
his.pop("content")
|
|
if his["role"] == "user":
|
|
his["parts"] = [his["content"]]
|
|
his.pop("content")
|
|
history[-1]["parts"].append("data:image/jpeg;base64," + image)
|
|
|
|
response = self.model.generate_content(history, generation_config=GenerationConfig(
|
|
temperature=gen_conf.get("temperature", 0.3),
|
|
top_p=gen_conf.get("top_p", 0.7)))
|
|
|
|
ans = response.text
|
|
return ans, response.usage_metadata.total_token_count
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf, image=""):
|
|
from transformers import GenerationConfig
|
|
if system:
|
|
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
|
|
|
|
ans = ""
|
|
try:
|
|
for his in history:
|
|
if his["role"] == "assistant":
|
|
his["role"] = "model"
|
|
his["parts"] = [his["content"]]
|
|
his.pop("content")
|
|
if his["role"] == "user":
|
|
his["parts"] = [his["content"]]
|
|
his.pop("content")
|
|
history[-1]["parts"].append("data:image/jpeg;base64," + image)
|
|
|
|
response = self.model.generate_content(history, generation_config=GenerationConfig(
|
|
temperature=gen_conf.get("temperature", 0.3),
|
|
top_p=gen_conf.get("top_p", 0.7)), stream=True)
|
|
|
|
for resp in response:
|
|
if not resp.text:
|
|
continue
|
|
ans += resp.text
|
|
yield ans
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield response._chunks[-1].usage_metadata.total_token_count
|
|
|
|
|
|
class OpenRouterCV(GptV4):
|
|
def __init__(
|
|
self,
|
|
key,
|
|
model_name,
|
|
lang="Chinese",
|
|
base_url="https://openrouter.ai/api/v1",
|
|
):
|
|
if not base_url:
|
|
base_url = "https://openrouter.ai/api/v1"
|
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
|
self.model_name = model_name
|
|
self.lang = lang
|
|
|
|
|
|
class LocalCV(Base):
|
|
def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
|
|
pass
|
|
|
|
def describe(self, image):
|
|
return "", 0
|
|
|
|
|
|
class NvidiaCV(Base):
|
|
def __init__(
|
|
self,
|
|
key,
|
|
model_name,
|
|
lang="Chinese",
|
|
base_url="https://ai.api.nvidia.com/v1/vlm",
|
|
):
|
|
if not base_url:
|
|
base_url = ("https://ai.api.nvidia.com/v1/vlm",)
|
|
self.lang = lang
|
|
factory, llm_name = model_name.split("/")
|
|
if factory != "liuhaotian":
|
|
self.base_url = os.path.join(base_url, factory, llm_name)
|
|
else:
|
|
self.base_url = os.path.join(
|
|
base_url, "community", llm_name.replace("-v1.6", "16")
|
|
)
|
|
self.key = key
|
|
|
|
def describe(self, image):
|
|
b64 = self.image2base64(image)
|
|
response = requests.post(
|
|
url=self.base_url,
|
|
headers={
|
|
"accept": "application/json",
|
|
"content-type": "application/json",
|
|
"Authorization": f"Bearer {self.key}",
|
|
},
|
|
json={
|
|
"messages": self.prompt(b64)
|
|
},
|
|
)
|
|
response = response.json()
|
|
return (
|
|
response["choices"][0]["message"]["content"].strip(),
|
|
response["usage"]["total_tokens"],
|
|
)
|
|
|
|
def describe_with_prompt(self, image, prompt=None):
|
|
b64 = self.image2base64(image)
|
|
vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
|
|
|
|
response = requests.post(
|
|
url=self.base_url,
|
|
headers={
|
|
"accept": "application/json",
|
|
"content-type": "application/json",
|
|
"Authorization": f"Bearer {self.key}",
|
|
},
|
|
json={
|
|
"messages": vision_prompt,
|
|
},
|
|
)
|
|
response = response.json()
|
|
return (
|
|
response["choices"][0]["message"]["content"].strip(),
|
|
response["usage"]["total_tokens"],
|
|
)
|
|
|
|
def prompt(self, b64):
|
|
return [
|
|
{
|
|
"role": "user",
|
|
"content": (
|
|
"请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
|
|
if self.lang.lower() == "chinese"
|
|
else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
|
|
)
|
|
+ f' <img src="data:image/jpeg;base64,{b64}"/>',
|
|
}
|
|
]
|
|
|
|
def vision_llm_prompt(self, b64, prompt=None):
|
|
return [
|
|
{
|
|
"role": "user",
|
|
"content": (
|
|
prompt if prompt else vision_llm_describe_prompt()
|
|
)
|
|
+ f' <img src="data:image/jpeg;base64,{b64}"/>',
|
|
}
|
|
]
|
|
|
|
def chat_prompt(self, text, b64):
|
|
return [
|
|
{
|
|
"role": "user",
|
|
"content": text + f' <img src="data:image/jpeg;base64,{b64}"/>',
|
|
}
|
|
]
|
|
|
|
|
|
class StepFunCV(GptV4):
|
|
def __init__(self, key, model_name="step-1v-8k", lang="Chinese", base_url="https://api.stepfun.com/v1"):
|
|
if not base_url:
|
|
base_url = "https://api.stepfun.com/v1"
|
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
|
self.model_name = model_name
|
|
self.lang = lang
|
|
|
|
|
|
class LmStudioCV(GptV4):
|
|
def __init__(self, key, model_name, lang="Chinese", base_url=""):
|
|
if not base_url:
|
|
raise ValueError("Local llm url cannot be None")
|
|
if base_url.split("/")[-1] != "v1":
|
|
base_url = os.path.join(base_url, "v1")
|
|
self.client = OpenAI(api_key="lm-studio", base_url=base_url)
|
|
self.model_name = model_name
|
|
self.lang = lang
|
|
|
|
|
|
class OpenAI_APICV(GptV4):
|
|
def __init__(self, key, model_name, lang="Chinese", base_url=""):
|
|
if not base_url:
|
|
raise ValueError("url cannot be None")
|
|
if base_url.split("/")[-1] != "v1":
|
|
base_url = os.path.join(base_url, "v1")
|
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
|
self.model_name = model_name.split("___")[0]
|
|
self.lang = lang
|
|
|
|
|
|
class TogetherAICV(GptV4):
|
|
def __init__(self, key, model_name, lang="Chinese", base_url="https://api.together.xyz/v1"):
|
|
if not base_url:
|
|
base_url = "https://api.together.xyz/v1"
|
|
super().__init__(key, model_name, lang, base_url)
|
|
|
|
|
|
class YiCV(GptV4):
|
|
def __init__(self, key, model_name, lang="Chinese", base_url="https://api.lingyiwanwu.com/v1",):
|
|
if not base_url:
|
|
base_url = "https://api.lingyiwanwu.com/v1"
|
|
super().__init__(key, model_name, lang, base_url)
|
|
|
|
|
|
class HunyuanCV(Base):
|
|
def __init__(self, key, model_name, lang="Chinese", base_url=None):
|
|
from tencentcloud.common import credential
|
|
from tencentcloud.hunyuan.v20230901 import hunyuan_client
|
|
|
|
key = json.loads(key)
|
|
sid = key.get("hunyuan_sid", "")
|
|
sk = key.get("hunyuan_sk", "")
|
|
cred = credential.Credential(sid, sk)
|
|
self.model_name = model_name
|
|
self.client = hunyuan_client.HunyuanClient(cred, "")
|
|
self.lang = lang
|
|
|
|
def describe(self, image):
|
|
from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
|
|
TencentCloudSDKException,
|
|
)
|
|
from tencentcloud.hunyuan.v20230901 import models
|
|
|
|
b64 = self.image2base64(image)
|
|
req = models.ChatCompletionsRequest()
|
|
params = {"Model": self.model_name, "Messages": self.prompt(b64)}
|
|
req.from_json_string(json.dumps(params))
|
|
ans = ""
|
|
try:
|
|
response = self.client.ChatCompletions(req)
|
|
ans = response.Choices[0].Message.Content
|
|
return ans, response.Usage.TotalTokens
|
|
except TencentCloudSDKException as e:
|
|
return ans + "\n**ERROR**: " + str(e), 0
|
|
|
|
def describe_with_prompt(self, image, prompt=None):
|
|
from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCloudSDKException
|
|
from tencentcloud.hunyuan.v20230901 import models
|
|
|
|
b64 = self.image2base64(image)
|
|
vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
|
|
req = models.ChatCompletionsRequest()
|
|
params = {"Model": self.model_name, "Messages": vision_prompt}
|
|
req.from_json_string(json.dumps(params))
|
|
ans = ""
|
|
try:
|
|
response = self.client.ChatCompletions(req)
|
|
ans = response.Choices[0].Message.Content
|
|
return ans, response.Usage.TotalTokens
|
|
except TencentCloudSDKException as e:
|
|
return ans + "\n**ERROR**: " + str(e), 0
|
|
|
|
def prompt(self, b64):
|
|
return [
|
|
{
|
|
"Role": "user",
|
|
"Contents": [
|
|
{
|
|
"Type": "image_url",
|
|
"ImageUrl": {
|
|
"Url": f"data:image/jpeg;base64,{b64}"
|
|
},
|
|
},
|
|
{
|
|
"Type": "text",
|
|
"Text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else
|
|
"Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
|
|
},
|
|
],
|
|
}
|
|
]
|
|
|
|
|
|
class AnthropicCV(Base):
|
|
def __init__(self, key, model_name, base_url=None):
|
|
import anthropic
|
|
|
|
self.client = anthropic.Anthropic(api_key=key)
|
|
self.model_name = model_name
|
|
self.system = ""
|
|
self.max_tokens = 8192
|
|
if "haiku" in self.model_name or "opus" in self.model_name:
|
|
self.max_tokens = 4096
|
|
|
|
def prompt(self, b64, prompt):
|
|
return [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image",
|
|
"source": {
|
|
"type": "base64",
|
|
"media_type": "image/jpeg",
|
|
"data": b64,
|
|
},
|
|
},
|
|
{
|
|
"type": "text",
|
|
"text": prompt
|
|
}
|
|
],
|
|
}
|
|
]
|
|
|
|
def describe(self, image):
|
|
b64 = self.image2base64(image)
|
|
prompt = self.prompt(b64,
|
|
"请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else
|
|
"Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
|
|
)
|
|
|
|
response = self.client.messages.create(
|
|
model=self.model_name,
|
|
max_tokens=self.max_tokens,
|
|
messages=prompt
|
|
)
|
|
return response["content"][0]["text"].strip(), response["usage"]["input_tokens"]+response["usage"]["output_tokens"]
|
|
|
|
def describe_with_prompt(self, image, prompt=None):
|
|
b64 = self.image2base64(image)
|
|
prompt = self.prompt(b64, prompt if prompt else vision_llm_describe_prompt())
|
|
|
|
response = self.client.messages.create(
|
|
model=self.model_name,
|
|
max_tokens=self.max_tokens,
|
|
messages=prompt
|
|
)
|
|
return response["content"][0]["text"].strip(), response["usage"]["input_tokens"]+response["usage"]["output_tokens"]
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if "presence_penalty" in gen_conf:
|
|
del gen_conf["presence_penalty"]
|
|
if "frequency_penalty" in gen_conf:
|
|
del gen_conf["frequency_penalty"]
|
|
gen_conf["max_tokens"] = self.max_tokens
|
|
|
|
ans = ""
|
|
try:
|
|
response = self.client.messages.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
system=system,
|
|
stream=False,
|
|
**gen_conf,
|
|
).to_dict()
|
|
ans = response["content"][0]["text"]
|
|
if response["stop_reason"] == "max_tokens":
|
|
ans += (
|
|
"...\nFor the content length reason, it stopped, continue?"
|
|
if is_english([ans])
|
|
else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
)
|
|
return (
|
|
ans,
|
|
response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
|
|
)
|
|
except Exception as e:
|
|
return ans + "\n**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if "presence_penalty" in gen_conf:
|
|
del gen_conf["presence_penalty"]
|
|
if "frequency_penalty" in gen_conf:
|
|
del gen_conf["frequency_penalty"]
|
|
gen_conf["max_tokens"] = self.max_tokens
|
|
|
|
ans = ""
|
|
total_tokens = 0
|
|
try:
|
|
response = self.client.messages.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
system=system,
|
|
stream=True,
|
|
**gen_conf,
|
|
)
|
|
for res in response:
|
|
if res.type == 'content_block_delta':
|
|
if res.delta.type == "thinking_delta" and res.delta.thinking:
|
|
if ans.find("<think>") < 0:
|
|
ans += "<think>"
|
|
ans = ans.replace("</think>", "")
|
|
ans += res.delta.thinking + "</think>"
|
|
else:
|
|
text = res.delta.text
|
|
ans += text
|
|
total_tokens += num_tokens_from_string(text)
|
|
yield ans
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield total_tokens |