ragflow/deepdoc/parser/excel_parser.py
SkyfireWXY 8fcca1b958
fix: big xls file error (#4859)
### What problem does this PR solve?

if *.xls file is too large, .eg >50M, I get error.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-02-12 12:39:25 +08:00

168 lines
5.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from openpyxl import load_workbook, Workbook
import sys
from io import BytesIO
from rag.nlp import find_codec
import pandas as pd
class RAGFlowExcelParser:
def html(self, fnm, chunk_rows=256):
# if isinstance(fnm, str):
# wb = load_workbook(fnm)
# else:
# wb = load_workbook(BytesIO(fnm))++
s_fnm = fnm
if not isinstance(fnm, str):
s_fnm = BytesIO(fnm)
else:
pass
try:
wb = load_workbook(s_fnm)
except Exception as e:
print(f'****wxy: file parser error: {e}, s_fnm={s_fnm}, trying convert files')
df = pd.read_excel(s_fnm)
wb = Workbook()
# if len(wb.worksheets) > 0:
# del wb.worksheets[0]
# else: pass
ws = wb.active
ws.title = "Data"
for col_num, column_name in enumerate(df.columns, 1):
ws.cell(row=1, column=col_num, value=column_name)
else:
pass
for row_num, row in enumerate(df.values, 2):
for col_num, value in enumerate(row, 1):
ws.cell(row=row_num, column=col_num, value=value)
else:
pass
else:
pass
tb_chunks = []
for sheetname in wb.sheetnames:
ws = wb[sheetname]
rows = list(ws.rows)
if not rows:
continue
tb_rows_0 = "<tr>"
for t in list(rows[0]):
tb_rows_0 += f"<th>{t.value}</th>"
tb_rows_0 += "</tr>"
for chunk_i in range((len(rows) - 1) // chunk_rows + 1):
tb = ""
tb += f"<table><caption>{sheetname}</caption>"
tb += tb_rows_0
for r in list(
rows[1 + chunk_i * chunk_rows: 1 + (chunk_i + 1) * chunk_rows]
):
tb += "<tr>"
for i, c in enumerate(r):
if c.value is None:
tb += "<td></td>"
else:
tb += f"<td>{c.value}</td>"
tb += "</tr>"
tb += "</table>\n"
tb_chunks.append(tb)
return tb_chunks
def __call__(self, fnm):
# if isinstance(fnm, str):
# wb = load_workbook(fnm)
# else:
# wb = load_workbook(BytesIO(fnm))
s_fnm = fnm
if not isinstance(fnm, str):
s_fnm = BytesIO(fnm)
else:
pass
try:
wb = load_workbook(s_fnm)
except Exception as e:
print(f'****wxy: file parser error: {e}, s_fnm={s_fnm}, trying convert files')
df = pd.read_excel(s_fnm)
wb = Workbook()
if len(wb.worksheets) > 0:
del wb.worksheets[0]
else:
pass
ws = wb.active
ws.title = "Data"
for col_num, column_name in enumerate(df.columns, 1):
ws.cell(row=1, column=col_num, value=column_name)
else:
pass
for row_num, row in enumerate(df.values, 2):
for col_num, value in enumerate(row, 1):
ws.cell(row=row_num, column=col_num, value=value)
else:
pass
else:
pass
res = []
for sheetname in wb.sheetnames:
ws = wb[sheetname]
rows = list(ws.rows)
if not rows:
continue
ti = list(rows[0])
for r in list(rows[1:]):
fields = []
for i, c in enumerate(r):
if not c.value:
continue
t = str(ti[i].value) if i < len(ti) else ""
t += ("" if t else "") + str(c.value)
fields.append(t)
line = "; ".join(fields)
if sheetname.lower().find("sheet") < 0:
line += " ——" + sheetname
res.append(line)
return res
@staticmethod
def row_number(fnm, binary):
if fnm.split(".")[-1].lower().find("xls") >= 0:
wb = load_workbook(BytesIO(binary))
total = 0
for sheetname in wb.sheetnames:
ws = wb[sheetname]
total += len(list(ws.rows))
return total
if fnm.split(".")[-1].lower() in ["csv", "txt"]:
encoding = find_codec(binary)
txt = binary.decode(encoding, errors="ignore")
return len(txt.split("\n"))
if __name__ == "__main__":
psr = RAGFlowExcelParser()
psr(sys.argv[1])