ragflow/rag/app/paper.py

258 lines
9.9 KiB
Python
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import copy
import re
from collections import Counter
from api.db import ParserType
from rag.nlp import huqie, tokenize, tokenize_table, add_positions
from deepdoc.parser import PdfParser
import numpy as np
from rag.utils import num_tokens_from_string
class Pdf(PdfParser):
def __init__(self):
self.model_speciess = ParserType.PAPER.value
super().__init__()
def __call__(self, filename, binary=None, from_page=0,
to_page=100000, zoomin=3, callback=None):
callback(msg="OCR is running...")
self.__images__(
filename if not binary else binary,
zoomin,
from_page,
to_page,
callback
)
callback("OCR finished.")
from timeit import default_timer as timer
start = timer()
self._layouts_rec(zoomin)
callback(0.63, "Layout analysis finished")
print("paddle layouts:", timer() - start)
self._table_transformer_job(zoomin)
callback(0.68, "Table analysis finished")
self._text_merge()
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
self._concat_downward(concat_between_pages=False)
self._filter_forpages()
callback(0.75, "Text merging finished.")
tbls = self._extract_table_figure(True, zoomin, True, True)
# clean mess
if column_width < self.page_images[0].size[0] / zoomin / 2:
print("two_column...................", column_width,
self.page_images[0].size[0] / zoomin / 2)
self.boxes = self.sort_X_by_page(self.boxes, column_width / 2)
for b in self.boxes:
b["text"] = re.sub(r"([\t  ]|\u3000){2,}", " ", b["text"].strip())
freq = Counter([b["text"] for b in self.boxes])
garbage = set([k for k, v in freq.items() if v > self.total_page * 0.6])
i = 0
while i < len(self.boxes):
if self.boxes[i]["text"] in garbage \
or (re.match(r"[a-zA-Z0-9]+$", self.boxes[i]["text"]) and not self.boxes[i].get("layoutno")) \
or (i + 1 < len(self.boxes) and self.boxes[i]["text"] == self.boxes[i + 1]["text"]):
self.boxes.pop(i)
elif i + 1 < len(self.boxes) and self.boxes[i].get("layoutno", '0') == self.boxes[i + 1].get("layoutno",
'1'):
# merge within same layouts
self.boxes[i + 1]["top"] = self.boxes[i]["top"]
self.boxes[i + 1]["x0"] = min(self.boxes[i]["x0"], self.boxes[i + 1]["x0"])
self.boxes[i + 1]["x1"] = max(self.boxes[i]["x1"], self.boxes[i + 1]["x1"])
self.boxes[i + 1]["text"] = self.boxes[i]["text"] + " " + self.boxes[i + 1]["text"]
self.boxes.pop(i)
else:
i += 1
def _begin(txt):
return re.match(
"[0-9. 一、i]*(introduction|abstract|摘要|引言|keywords|key words|关键词|background|背景|目录|前言|contents)",
txt.lower().strip())
if from_page > 0:
return {
"title":"",
"authors": "",
"abstract": "",
"lines": [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", "")) for b in self.boxes[i:] if
re.match(r"(text|title)", b.get("layoutno", "text"))],
"tables": tbls
}
# get title and authors
title = ""
authors = []
i = 0
while i < min(32, len(self.boxes)):
b = self.boxes[i]
i += 1
if b.get("layoutno", "").find("title") >= 0:
title = b["text"]
if _begin(title):
title = ""
break
for j in range(3):
if _begin(self.boxes[i + j]["text"]): break
authors.append(self.boxes[i + j]["text"])
break
break
# get abstract
abstr = ""
i = 0
while i + 1 < min(32, len(self.boxes)):
b = self.boxes[i]
i += 1
txt = b["text"].lower().strip()
if re.match("(abstract|摘要)", txt):
if len(txt.split(" ")) > 32 or len(txt) > 64:
abstr = txt + self._line_tag(b, zoomin)
i += 1
break
txt = self.boxes[i + 1]["text"].lower().strip()
if len(txt.split(" ")) > 32 or len(txt) > 64:
abstr = txt + self._line_tag(self.boxes[i + 1], zoomin)
i += 1
break
if not abstr: i = 0
callback(0.8, "Page {}~{}: Text merging finished".format(from_page, min(to_page, self.total_page)))
for b in self.boxes: print(b["text"], b.get("layoutno"))
print(tbls)
return {
"title": title if title else filename,
"authors": " ".join(authors),
"abstract": abstr,
"lines": [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", "")) for b in self.boxes[i:] if
re.match(r"(text|title)", b.get("layoutno", "text"))],
"tables": tbls
}
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
"""
Only pdf is supported.
The abstract of the paper will be sliced as an entire chunk, and will not be sliced partly.
"""
pdf_parser = None
if re.search(r"\.pdf$", filename, re.IGNORECASE):
pdf_parser = Pdf()
paper = pdf_parser(filename if not binary else binary,
from_page=from_page, to_page=to_page, callback=callback)
else: raise NotImplementedError("file type not supported yet(pdf supported)")
doc = {"docnm_kwd": filename, "authors_tks": paper["authors"],
"title_tks": huqie.qie(paper["title"] if paper["title"] else filename)}
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
doc["authors_sm_tks"] = huqie.qieqie(doc["authors_tks"])
# is it English
eng = lang.lower() == "english"#pdf_parser.is_english
print("It's English.....", eng)
res = tokenize_table(paper["tables"], doc, eng)
if paper["abstract"]:
d = copy.deepcopy(doc)
txt = pdf_parser.remove_tag(paper["abstract"])
d["important_kwd"] = ["abstract", "总结", "概括", "summary", "summarize"]
d["important_tks"] = " ".join(d["important_kwd"])
d["image"], poss = pdf_parser.crop(paper["abstract"], need_position=True)
add_positions(d, poss)
tokenize(d, txt, eng)
res.append(d)
readed = [0] * len(paper["lines"])
# find colon firstly
i = 0
while i + 1 < len(paper["lines"]):
txt = pdf_parser.remove_tag(paper["lines"][i][0])
j = i
if txt.strip("\n").strip()[-1] not in ":":
i += 1
continue
i += 1
while i < len(paper["lines"]) and not paper["lines"][i][0]:
i += 1
if i >= len(paper["lines"]): break
proj = [paper["lines"][i][0].strip()]
i += 1
while i < len(paper["lines"]) and paper["lines"][i][0].strip()[0] == proj[-1][0]:
proj.append(paper["lines"][i])
i += 1
for k in range(j, i): readed[k] = True
txt = txt[::-1]
if eng:
r = re.search(r"(.*?) ([\.;?!]|$)", txt)
txt = r.group(1)[::-1] if r else txt[::-1]
else:
r = re.search(r"(.*?) ([。?;!]|$)", txt)
txt = r.group(1)[::-1] if r else txt[::-1]
for p in proj:
d = copy.deepcopy(doc)
txt += "\n" + pdf_parser.remove_tag(p)
d["image"], poss = pdf_parser.crop(p, need_position=True)
add_positions(d, poss)
tokenize(d, txt, eng)
res.append(d)
i = 0
chunk = []
tk_cnt = 0
def add_chunk():
nonlocal chunk, res, doc, pdf_parser, tk_cnt
d = copy.deepcopy(doc)
ck = "\n".join(chunk)
tokenize(d, pdf_parser.remove_tag(ck), pdf_parser.is_english)
d["image"], poss = pdf_parser.crop(ck, need_position=True)
add_positions(d, poss)
res.append(d)
chunk = []
tk_cnt = 0
while i < len(paper["lines"]):
if tk_cnt > 128:
add_chunk()
if readed[i]:
i += 1
continue
readed[i] = True
txt, layouts = paper["lines"][i]
txt_ = pdf_parser.remove_tag(txt)
i += 1
cnt = num_tokens_from_string(txt_)
if any([
layouts.find("title") >= 0 and chunk,
cnt + tk_cnt > 128 and tk_cnt > 32,
]):
add_chunk()
chunk = [txt]
tk_cnt = cnt
else:
chunk.append(txt)
tk_cnt += cnt
if chunk: add_chunk()
for i, d in enumerate(res):
print(d)
# d["image"].save(f"./logs/{i}.jpg")
return res
if __name__ == "__main__":
import sys
def dummy(a, b):
pass
chunk(sys.argv[1], callback=dummy)