mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-22 14:10:01 +08:00

### What problem does this PR solve? Issue link:#299 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
225 lines
8.6 KiB
Python
225 lines
8.6 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
from zhipuai import ZhipuAI
|
|
from dashscope import Generation
|
|
from abc import ABC
|
|
from openai import OpenAI
|
|
import openai
|
|
from ollama import Client
|
|
from rag.nlp import is_english
|
|
from rag.utils import num_tokens_from_string
|
|
|
|
|
|
class Base(ABC):
|
|
def __init__(self, key, model_name):
|
|
pass
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
raise NotImplementedError("Please implement encode method!")
|
|
|
|
|
|
class GptTurbo(Base):
|
|
def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"):
|
|
if not base_url: base_url="https://api.openai.com/v1"
|
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
|
self.model_name = model_name
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
try:
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
**gen_conf)
|
|
ans = response.choices[0].message.content.strip()
|
|
if response.choices[0].finish_reason == "length":
|
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
|
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
return ans, response.usage.completion_tokens
|
|
except openai.APIError as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
|
|
class MoonshotChat(GptTurbo):
|
|
def __init__(self, key, model_name="moonshot-v1-8k", base_url="https://api.moonshot.cn/v1"):
|
|
if not base_url: base_url="https://api.moonshot.cn/v1"
|
|
self.client = OpenAI(
|
|
api_key=key, base_url=base_url)
|
|
self.model_name = model_name
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
try:
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
**gen_conf)
|
|
ans = response.choices[0].message.content.strip()
|
|
if response.choices[0].finish_reason == "length":
|
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
|
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
return ans, response.usage.completion_tokens
|
|
except openai.APIError as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
|
|
class QWenChat(Base):
|
|
def __init__(self, key, model_name=Generation.Models.qwen_turbo, **kwargs):
|
|
import dashscope
|
|
dashscope.api_key = key
|
|
self.model_name = model_name
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
from http import HTTPStatus
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
response = Generation.call(
|
|
self.model_name,
|
|
messages=history,
|
|
result_format='message',
|
|
**gen_conf
|
|
)
|
|
ans = ""
|
|
tk_count = 0
|
|
if response.status_code == HTTPStatus.OK:
|
|
ans += response.output.choices[0]['message']['content']
|
|
tk_count += response.usage.total_tokens
|
|
if response.output.choices[0].get("finish_reason", "") == "length":
|
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
|
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
return ans, tk_count
|
|
|
|
return "**ERROR**: " + response.message, tk_count
|
|
|
|
|
|
class ZhipuChat(Base):
|
|
def __init__(self, key, model_name="glm-3-turbo", **kwargs):
|
|
self.client = ZhipuAI(api_key=key)
|
|
self.model_name = model_name
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
try:
|
|
if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"]
|
|
if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"]
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
**gen_conf
|
|
)
|
|
ans = response.choices[0].message.content.strip()
|
|
if response.choices[0].finish_reason == "length":
|
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
|
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
return ans, response.usage.completion_tokens
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
|
|
class OllamaChat(Base):
|
|
def __init__(self, key, model_name, **kwargs):
|
|
self.client = Client(host=kwargs["base_url"])
|
|
self.model_name = model_name
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
try:
|
|
options = {"temperature": gen_conf.get("temperature", 0.1),
|
|
"num_predict": gen_conf.get("max_tokens", 128),
|
|
"top_k": gen_conf.get("top_p", 0.3),
|
|
"presence_penalty": gen_conf.get("presence_penalty", 0.4),
|
|
"frequency_penalty": gen_conf.get("frequency_penalty", 0.7),
|
|
}
|
|
response = self.client.chat(
|
|
model=self.model_name,
|
|
messages=history,
|
|
options=options
|
|
)
|
|
ans = response["message"]["content"].strip()
|
|
return ans, response["eval_count"]
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
|
|
class XinferenceChat(Base):
|
|
def __init__(self, key=None, model_name="", base_url=""):
|
|
self.client = OpenAI(api_key="xxx", base_url=base_url)
|
|
self.model_name = model_name
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
try:
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
**gen_conf)
|
|
ans = response.choices[0].message.content.strip()
|
|
if response.choices[0].finish_reason == "length":
|
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
|
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
return ans, response.usage.completion_tokens
|
|
except openai.APIError as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
|
|
class LocalLLM(Base):
|
|
class RPCProxy:
|
|
def __init__(self, host, port):
|
|
self.host = host
|
|
self.port = int(port)
|
|
self.__conn()
|
|
|
|
def __conn(self):
|
|
from multiprocessing.connection import Client
|
|
self._connection = Client(
|
|
(self.host, self.port), authkey=b'infiniflow-token4kevinhu')
|
|
|
|
def __getattr__(self, name):
|
|
import pickle
|
|
|
|
def do_rpc(*args, **kwargs):
|
|
for _ in range(3):
|
|
try:
|
|
self._connection.send(
|
|
pickle.dumps((name, args, kwargs)))
|
|
return pickle.loads(self._connection.recv())
|
|
except Exception as e:
|
|
self.__conn()
|
|
raise Exception("RPC connection lost!")
|
|
|
|
return do_rpc
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
self.client = LocalLLM.RPCProxy("127.0.0.1", 7860)
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
try:
|
|
ans = self.client.chat(
|
|
history,
|
|
gen_conf
|
|
)
|
|
return ans, num_tokens_from_string(ans)
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|