mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-20 13:10:05 +08:00

### What problem does this PR solve? Refactor embedding batch_size. Close #3657 ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue) - [x] Refactoring
302 lines
13 KiB
Python
302 lines
13 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import json
|
|
import logging
|
|
import os
|
|
|
|
from api.db.services.user_service import TenantService
|
|
from api.utils.file_utils import get_project_base_directory
|
|
from rag.llm import EmbeddingModel, CvModel, ChatModel, RerankModel, Seq2txtModel, TTSModel
|
|
from api.db import LLMType
|
|
from api.db.db_models import DB
|
|
from api.db.db_models import LLMFactories, LLM, TenantLLM
|
|
from api.db.services.common_service import CommonService
|
|
|
|
|
|
class LLMFactoriesService(CommonService):
|
|
model = LLMFactories
|
|
|
|
|
|
class LLMService(CommonService):
|
|
model = LLM
|
|
|
|
|
|
class TenantLLMService(CommonService):
|
|
model = TenantLLM
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_api_key(cls, tenant_id, model_name):
|
|
mdlnm, fid = TenantLLMService.split_model_name_and_factory(model_name)
|
|
if not fid:
|
|
objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm)
|
|
else:
|
|
objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm, llm_factory=fid)
|
|
if not objs:
|
|
return
|
|
return objs[0]
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_my_llms(cls, tenant_id):
|
|
fields = [
|
|
cls.model.llm_factory,
|
|
LLMFactories.logo,
|
|
LLMFactories.tags,
|
|
cls.model.model_type,
|
|
cls.model.llm_name,
|
|
cls.model.used_tokens
|
|
]
|
|
objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(
|
|
cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts()
|
|
|
|
return list(objs)
|
|
|
|
@staticmethod
|
|
def split_model_name_and_factory(model_name):
|
|
arr = model_name.split("@")
|
|
if len(arr) < 2:
|
|
return model_name, None
|
|
if len(arr) > 2:
|
|
return "@".join(arr[0:-1]), arr[-1]
|
|
try:
|
|
fact = json.load(open(os.path.join(get_project_base_directory(), "conf/llm_factories.json"), "r"))["factory_llm_infos"]
|
|
fact = set([f["name"] for f in fact])
|
|
if arr[-1] not in fact:
|
|
return model_name, None
|
|
return arr[0], arr[-1]
|
|
except Exception as e:
|
|
logging.exception(f"TenantLLMService.split_model_name_and_factory got exception: {e}")
|
|
return model_name, None
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def model_instance(cls, tenant_id, llm_type,
|
|
llm_name=None, lang="Chinese"):
|
|
e, tenant = TenantService.get_by_id(tenant_id)
|
|
if not e:
|
|
raise LookupError("Tenant not found")
|
|
|
|
if llm_type == LLMType.EMBEDDING.value:
|
|
mdlnm = tenant.embd_id if not llm_name else llm_name
|
|
elif llm_type == LLMType.SPEECH2TEXT.value:
|
|
mdlnm = tenant.asr_id
|
|
elif llm_type == LLMType.IMAGE2TEXT.value:
|
|
mdlnm = tenant.img2txt_id if not llm_name else llm_name
|
|
elif llm_type == LLMType.CHAT.value:
|
|
mdlnm = tenant.llm_id if not llm_name else llm_name
|
|
elif llm_type == LLMType.RERANK:
|
|
mdlnm = tenant.rerank_id if not llm_name else llm_name
|
|
elif llm_type == LLMType.TTS:
|
|
mdlnm = tenant.tts_id if not llm_name else llm_name
|
|
else:
|
|
assert False, "LLM type error"
|
|
|
|
model_config = cls.get_api_key(tenant_id, mdlnm)
|
|
mdlnm, fid = TenantLLMService.split_model_name_and_factory(mdlnm)
|
|
if model_config: model_config = model_config.to_dict()
|
|
if not model_config:
|
|
if llm_type in [LLMType.EMBEDDING, LLMType.RERANK]:
|
|
llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
|
|
if llm and llm[0].fid in ["Youdao", "FastEmbed", "BAAI"]:
|
|
model_config = {"llm_factory": llm[0].fid, "api_key":"", "llm_name": mdlnm, "api_base": ""}
|
|
if not model_config:
|
|
if mdlnm == "flag-embedding":
|
|
model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "",
|
|
"llm_name": llm_name, "api_base": ""}
|
|
else:
|
|
if not mdlnm:
|
|
raise LookupError(f"Type of {llm_type} model is not set.")
|
|
raise LookupError("Model({}) not authorized".format(mdlnm))
|
|
|
|
if llm_type == LLMType.EMBEDDING.value:
|
|
if model_config["llm_factory"] not in EmbeddingModel:
|
|
return
|
|
return EmbeddingModel[model_config["llm_factory"]](
|
|
model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
|
|
|
|
if llm_type == LLMType.RERANK:
|
|
if model_config["llm_factory"] not in RerankModel:
|
|
return
|
|
return RerankModel[model_config["llm_factory"]](
|
|
model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
|
|
|
|
if llm_type == LLMType.IMAGE2TEXT.value:
|
|
if model_config["llm_factory"] not in CvModel:
|
|
return
|
|
return CvModel[model_config["llm_factory"]](
|
|
model_config["api_key"], model_config["llm_name"], lang,
|
|
base_url=model_config["api_base"]
|
|
)
|
|
|
|
if llm_type == LLMType.CHAT.value:
|
|
if model_config["llm_factory"] not in ChatModel:
|
|
return
|
|
return ChatModel[model_config["llm_factory"]](
|
|
model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
|
|
|
|
if llm_type == LLMType.SPEECH2TEXT:
|
|
if model_config["llm_factory"] not in Seq2txtModel:
|
|
return
|
|
return Seq2txtModel[model_config["llm_factory"]](
|
|
key=model_config["api_key"], model_name=model_config["llm_name"],
|
|
lang=lang,
|
|
base_url=model_config["api_base"]
|
|
)
|
|
if llm_type == LLMType.TTS:
|
|
if model_config["llm_factory"] not in TTSModel:
|
|
return
|
|
return TTSModel[model_config["llm_factory"]](
|
|
model_config["api_key"],
|
|
model_config["llm_name"],
|
|
base_url=model_config["api_base"],
|
|
)
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def increase_usage(cls, tenant_id, llm_type, used_tokens, llm_name=None):
|
|
e, tenant = TenantService.get_by_id(tenant_id)
|
|
if not e:
|
|
raise LookupError("Tenant not found")
|
|
|
|
if llm_type == LLMType.EMBEDDING.value:
|
|
mdlnm = tenant.embd_id
|
|
elif llm_type == LLMType.SPEECH2TEXT.value:
|
|
mdlnm = tenant.asr_id
|
|
elif llm_type == LLMType.IMAGE2TEXT.value:
|
|
mdlnm = tenant.img2txt_id
|
|
elif llm_type == LLMType.CHAT.value:
|
|
mdlnm = tenant.llm_id if not llm_name else llm_name
|
|
elif llm_type == LLMType.RERANK:
|
|
mdlnm = tenant.rerank_id if not llm_name else llm_name
|
|
elif llm_type == LLMType.TTS:
|
|
mdlnm = tenant.tts_id if not llm_name else llm_name
|
|
else:
|
|
assert False, "LLM type error"
|
|
|
|
llm_name, llm_factory = TenantLLMService.split_model_name_and_factory(mdlnm)
|
|
|
|
num = 0
|
|
try:
|
|
if llm_factory:
|
|
tenant_llms = cls.query(tenant_id=tenant_id, llm_name=llm_name, llm_factory=llm_factory)
|
|
else:
|
|
tenant_llms = cls.query(tenant_id=tenant_id, llm_name=llm_name)
|
|
if not tenant_llms:
|
|
if not llm_factory: llm_factory = mdlnm
|
|
num = cls.model.create(tenant_id=tenant_id, llm_factory=llm_factory, llm_name=llm_name, used_tokens=used_tokens)
|
|
else:
|
|
tenant_llm = tenant_llms[0]
|
|
num = cls.model.update(used_tokens=tenant_llm.used_tokens + used_tokens)\
|
|
.where(cls.model.tenant_id == tenant_id, cls.model.llm_factory == tenant_llm.llm_factory, cls.model.llm_name == llm_name)\
|
|
.execute()
|
|
except Exception:
|
|
logging.exception("TenantLLMService.increase_usage got exception")
|
|
return num
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_openai_models(cls):
|
|
objs = cls.model.select().where(
|
|
(cls.model.llm_factory == "OpenAI"),
|
|
~(cls.model.llm_name == "text-embedding-3-small"),
|
|
~(cls.model.llm_name == "text-embedding-3-large")
|
|
).dicts()
|
|
return list(objs)
|
|
|
|
|
|
class LLMBundle(object):
|
|
def __init__(self, tenant_id, llm_type, llm_name=None, lang="Chinese"):
|
|
self.tenant_id = tenant_id
|
|
self.llm_type = llm_type
|
|
self.llm_name = llm_name
|
|
self.mdl = TenantLLMService.model_instance(
|
|
tenant_id, llm_type, llm_name, lang=lang)
|
|
assert self.mdl, "Can't find model for {}/{}/{}".format(
|
|
tenant_id, llm_type, llm_name)
|
|
self.max_length = 8192
|
|
for lm in LLMService.query(llm_name=llm_name):
|
|
self.max_length = lm.max_tokens
|
|
break
|
|
|
|
def encode(self, texts: list):
|
|
embeddings, used_tokens = self.mdl.encode(texts)
|
|
if not TenantLLMService.increase_usage(
|
|
self.tenant_id, self.llm_type, used_tokens):
|
|
logging.error(
|
|
"LLMBundle.encode can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
|
|
return embeddings, used_tokens
|
|
|
|
def encode_queries(self, query: str):
|
|
emd, used_tokens = self.mdl.encode_queries(query)
|
|
if not TenantLLMService.increase_usage(
|
|
self.tenant_id, self.llm_type, used_tokens):
|
|
logging.error(
|
|
"LLMBundle.encode_queries can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
|
|
return emd, used_tokens
|
|
|
|
def similarity(self, query: str, texts: list):
|
|
sim, used_tokens = self.mdl.similarity(query, texts)
|
|
if not TenantLLMService.increase_usage(
|
|
self.tenant_id, self.llm_type, used_tokens):
|
|
logging.error(
|
|
"LLMBundle.similarity can't update token usage for {}/RERANK used_tokens: {}".format(self.tenant_id, used_tokens))
|
|
return sim, used_tokens
|
|
|
|
def describe(self, image, max_tokens=300):
|
|
txt, used_tokens = self.mdl.describe(image, max_tokens)
|
|
if not TenantLLMService.increase_usage(
|
|
self.tenant_id, self.llm_type, used_tokens):
|
|
logging.error(
|
|
"LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
|
|
return txt
|
|
|
|
def transcription(self, audio):
|
|
txt, used_tokens = self.mdl.transcription(audio)
|
|
if not TenantLLMService.increase_usage(
|
|
self.tenant_id, self.llm_type, used_tokens):
|
|
logging.error(
|
|
"LLMBundle.transcription can't update token usage for {}/SEQUENCE2TXT used_tokens: {}".format(self.tenant_id, used_tokens))
|
|
return txt
|
|
|
|
def tts(self, text):
|
|
for chunk in self.mdl.tts(text):
|
|
if isinstance(chunk,int):
|
|
if not TenantLLMService.increase_usage(
|
|
self.tenant_id, self.llm_type, chunk, self.llm_name):
|
|
logging.error(
|
|
"LLMBundle.tts can't update token usage for {}/TTS".format(self.tenant_id))
|
|
return
|
|
yield chunk
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
txt, used_tokens = self.mdl.chat(system, history, gen_conf)
|
|
if isinstance(txt, int) and not TenantLLMService.increase_usage(
|
|
self.tenant_id, self.llm_type, used_tokens, self.llm_name):
|
|
logging.error(
|
|
"LLMBundle.chat can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name, used_tokens))
|
|
return txt
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
for txt in self.mdl.chat_streamly(system, history, gen_conf):
|
|
if isinstance(txt, int):
|
|
if not TenantLLMService.increase_usage(
|
|
self.tenant_id, self.llm_type, txt, self.llm_name):
|
|
logging.error(
|
|
"LLMBundle.chat_streamly can't update token usage for {}/CHAT llm_name: {}, content: {}".format(self.tenant_id, self.llm_name, txt))
|
|
return
|
|
yield txt
|