mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-21 05:29:57 +08:00

### What problem does this PR solve? Fix #5418 Actually, the fix #4329 also works for agent flows with parameters, so this PR just relaxes the `else` branch of that. With this PR, it works fine on my side, may need more testing to make sure this does not break something. I guess the real problem may be deeply hidden in the code which relates to conversation and canvas execution. After a few hours of debugging, I see the only difference between with and without parameters in `begin` component, is the `history` field of canvas data. When the `begin` component contains some parameters, the debug log shows: ``` 025-03-29 19:50:38,521 DEBUG 356590 { "component_name": "Begin", "params": {"output_var_name": "output", "message_history_window_size": 22, "query": [{"type": "fileUrls", "key": "fileUrls", "name": "files", "optional": true, "value": "问题.txt\n今天天气怎么样"}], "inputs": [], "debug_inputs": [], "prologue": "你好! 我是你的助理,有什么可以帮到你的吗?", "output": null}, "output": null, "inputs": [] }, history: [["user", "请回答我上传文件中的问题。"]], kwargs: {"stream": false} 2025-03-29 19:50:38,523 DEBUG 356590 { "component_name": "Answer", "params": {"output_var_name": "output", "message_history_window_size": 22, "query": [], "inputs": [], "debug_inputs": [], "post_answers": [], "output": null}, "output": null, "inputs": [] }, history: [["user", "请回答我上传文件中的问题。"]], kwargs: {"stream": false} ``` Then it does not go further along the flow. When the `begin` component does not contain any parameter, the debug log shows: ``` 2025-03-29 19:41:13,518 DEBUG 353596 { "component_name": "Begin", "params": {"output_var_name": "output", "message_history_window_size": 22, "query": [], "inputs": [], "debug_inputs": [], "prologue": "你好! 我是你的助理,有什么可以帮到你的吗?", "output": null}, "output": null, "inputs": [] }, history: [], kwargs: {"stream": false} 2025-03-29 19:41:13,520 DEBUG 353596 { "component_name": "Answer", "params": {"output_var_name": "output", "message_history_window_size": 22, "query": [], "inputs": [], "debug_inputs": [], "post_answers": [], "output": null}, "output": null, "inputs": [] }, history: [], kwargs: {"stream": false} 2025-03-29 19:41:13,556 INFO 353596 127.0.0.1 - - [29/Mar/2025 19:41:13] "POST /api/v1/agents/fee6886a0c6f11f09b48eb8798e9aa9b/sessions?user_id=123 HTTP/1.1" 200 - 2025-03-29 19:41:21,115 DEBUG 353596 Canvas.prepare2run: Retrieval:LateGuestsNotice 2025-03-29 19:41:21,116 DEBUG 353596 { "component_name": "Retrieval", "params": {"output_var_name": "output", "message_history_window_size": 22, "query": [], "inputs": [], "debug_inputs": [], "similarity_threshold": 0.2, "keywords_similarity_weight": 0.3, "top_n": 8, "top_k": 1024, "kb_ids": ["9aca3c700c5911f0811caf35658b9385"], "rerank_id": "", "empty_response": "", "tavily_api_key": "", "use_kg": false, "output": null}, "output": null, "inputs": [] }, history: [["user", "请回答我上传文件中的问题。"]], kwargs: {"stream": false} ``` It correctly goes along the flow and generates correct answer. You can see the difference: when the `begin` component has any parameter, the `history` field is filled from the beginning, while it is just `[]` if the `begin` component has no parameter. ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue) - [ ] New Feature (non-breaking change which adds functionality) - [ ] Documentation Update - [ ] Refactoring - [ ] Performance Improvement - [ ] Other (please describe):
700 lines
30 KiB
Python
700 lines
30 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import json
|
|
import re
|
|
import time
|
|
|
|
from flask import Response, jsonify, request
|
|
|
|
from agent.canvas import Canvas
|
|
from api.db import LLMType, StatusEnum
|
|
from api.db.db_models import APIToken
|
|
from api.db.services.api_service import API4ConversationService
|
|
from api.db.services.canvas_service import UserCanvasService
|
|
from api.db.services.canvas_service import completion as agent_completion
|
|
from api.db.services.conversation_service import ConversationService, iframe_completion
|
|
from api.db.services.conversation_service import completion as rag_completion
|
|
from api.db.services.dialog_service import DialogService, ask, chat
|
|
from api.db.services.file_service import FileService
|
|
from api.db.services.knowledgebase_service import KnowledgebaseService
|
|
from api.db.services.llm_service import LLMBundle
|
|
from api.utils import get_uuid
|
|
from api.utils.api_utils import get_error_data_result, get_result, token_required, validate_request
|
|
|
|
|
|
@manager.route("/chats/<chat_id>/sessions", methods=["POST"]) # noqa: F821
|
|
@token_required
|
|
def create(tenant_id, chat_id):
|
|
req = request.json
|
|
req["dialog_id"] = chat_id
|
|
dia = DialogService.query(tenant_id=tenant_id, id=req["dialog_id"], status=StatusEnum.VALID.value)
|
|
if not dia:
|
|
return get_error_data_result(message="You do not own the assistant.")
|
|
conv = {
|
|
"id": get_uuid(),
|
|
"dialog_id": req["dialog_id"],
|
|
"name": req.get("name", "New session"),
|
|
"message": [{"role": "assistant", "content": dia[0].prompt_config.get("prologue")}],
|
|
"user_id": req.get("user_id", ""),
|
|
}
|
|
if not conv.get("name"):
|
|
return get_error_data_result(message="`name` can not be empty.")
|
|
ConversationService.save(**conv)
|
|
e, conv = ConversationService.get_by_id(conv["id"])
|
|
if not e:
|
|
return get_error_data_result(message="Fail to create a session!")
|
|
conv = conv.to_dict()
|
|
conv["messages"] = conv.pop("message")
|
|
conv["chat_id"] = conv.pop("dialog_id")
|
|
del conv["reference"]
|
|
return get_result(data=conv)
|
|
|
|
|
|
@manager.route("/agents/<agent_id>/sessions", methods=["POST"]) # noqa: F821
|
|
@token_required
|
|
def create_agent_session(tenant_id, agent_id):
|
|
req = request.json
|
|
if not request.is_json:
|
|
req = request.form
|
|
files = request.files
|
|
user_id = request.args.get("user_id", "")
|
|
|
|
e, cvs = UserCanvasService.get_by_id(agent_id)
|
|
if not e:
|
|
return get_error_data_result("Agent not found.")
|
|
|
|
if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
|
|
return get_error_data_result("You cannot access the agent.")
|
|
|
|
if not isinstance(cvs.dsl, str):
|
|
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
|
|
|
|
canvas = Canvas(cvs.dsl, tenant_id)
|
|
canvas.reset()
|
|
query = canvas.get_preset_param()
|
|
if query:
|
|
for ele in query:
|
|
if not ele["optional"]:
|
|
if ele["type"] == "file":
|
|
if files is None or not files.get(ele["key"]):
|
|
return get_error_data_result(f"`{ele['key']}` with type `{ele['type']}` is required")
|
|
upload_file = files.get(ele["key"])
|
|
file_content = FileService.parse_docs([upload_file], user_id)
|
|
file_name = upload_file.filename
|
|
ele["value"] = file_name + "\n" + file_content
|
|
else:
|
|
if req is None or not req.get(ele["key"]):
|
|
return get_error_data_result(f"`{ele['key']}` with type `{ele['type']}` is required")
|
|
ele["value"] = req[ele["key"]]
|
|
else:
|
|
if ele["type"] == "file":
|
|
if files is not None and files.get(ele["key"]):
|
|
upload_file = files.get(ele["key"])
|
|
file_content = FileService.parse_docs([upload_file], user_id)
|
|
file_name = upload_file.filename
|
|
ele["value"] = file_name + "\n" + file_content
|
|
else:
|
|
if "value" in ele:
|
|
ele.pop("value")
|
|
else:
|
|
if req is not None and req.get(ele["key"]):
|
|
ele["value"] = req[ele["key"]]
|
|
else:
|
|
if "value" in ele:
|
|
ele.pop("value")
|
|
|
|
for ans in canvas.run(stream=False):
|
|
pass
|
|
|
|
cvs.dsl = json.loads(str(canvas))
|
|
conv = {"id": get_uuid(), "dialog_id": cvs.id, "user_id": user_id, "message": [{"role": "assistant", "content": canvas.get_prologue()}], "source": "agent", "dsl": cvs.dsl}
|
|
API4ConversationService.save(**conv)
|
|
conv["agent_id"] = conv.pop("dialog_id")
|
|
return get_result(data=conv)
|
|
|
|
|
|
@manager.route("/chats/<chat_id>/sessions/<session_id>", methods=["PUT"]) # noqa: F821
|
|
@token_required
|
|
def update(tenant_id, chat_id, session_id):
|
|
req = request.json
|
|
req["dialog_id"] = chat_id
|
|
conv_id = session_id
|
|
conv = ConversationService.query(id=conv_id, dialog_id=chat_id)
|
|
if not conv:
|
|
return get_error_data_result(message="Session does not exist")
|
|
if not DialogService.query(id=chat_id, tenant_id=tenant_id, status=StatusEnum.VALID.value):
|
|
return get_error_data_result(message="You do not own the session")
|
|
if "message" in req or "messages" in req:
|
|
return get_error_data_result(message="`message` can not be change")
|
|
if "reference" in req:
|
|
return get_error_data_result(message="`reference` can not be change")
|
|
if "name" in req and not req.get("name"):
|
|
return get_error_data_result(message="`name` can not be empty.")
|
|
if not ConversationService.update_by_id(conv_id, req):
|
|
return get_error_data_result(message="Session updates error")
|
|
return get_result()
|
|
|
|
|
|
@manager.route("/chats/<chat_id>/completions", methods=["POST"]) # noqa: F821
|
|
@token_required
|
|
def chat_completion(tenant_id, chat_id):
|
|
req = request.json
|
|
if not req:
|
|
req = {"question": ""}
|
|
if not req.get("session_id"):
|
|
req["question"] = ""
|
|
if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
|
|
return get_error_data_result(f"You don't own the chat {chat_id}")
|
|
if req.get("session_id"):
|
|
if not ConversationService.query(id=req["session_id"], dialog_id=chat_id):
|
|
return get_error_data_result(f"You don't own the session {req['session_id']}")
|
|
if req.get("stream", True):
|
|
resp = Response(rag_completion(tenant_id, chat_id, **req), mimetype="text/event-stream")
|
|
resp.headers.add_header("Cache-control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
|
|
return resp
|
|
else:
|
|
answer = None
|
|
for ans in rag_completion(tenant_id, chat_id, **req):
|
|
answer = ans
|
|
break
|
|
return get_result(data=answer)
|
|
|
|
|
|
@manager.route("/chats_openai/<chat_id>/chat/completions", methods=["POST"]) # noqa: F821
|
|
@validate_request("model", "messages") # noqa: F821
|
|
@token_required
|
|
def chat_completion_openai_like(tenant_id, chat_id):
|
|
"""
|
|
OpenAI-like chat completion API that simulates the behavior of OpenAI's completions endpoint.
|
|
|
|
This function allows users to interact with a model and receive responses based on a series of historical messages.
|
|
If `stream` is set to True (by default), the response will be streamed in chunks, mimicking the OpenAI-style API.
|
|
Set `stream` to False explicitly, the response will be returned in a single complete answer.
|
|
Example usage:
|
|
|
|
curl -X POST https://ragflow_address.com/api/v1/chats_openai/<chat_id>/chat/completions \
|
|
-H "Content-Type: application/json" \
|
|
-H "Authorization: Bearer $RAGFLOW_API_KEY" \
|
|
-d '{
|
|
"model": "model",
|
|
"messages": [{"role": "user", "content": "Say this is a test!"}],
|
|
"stream": true
|
|
}'
|
|
|
|
Alternatively, you can use Python's `OpenAI` client:
|
|
|
|
from openai import OpenAI
|
|
|
|
model = "model"
|
|
client = OpenAI(api_key="ragflow-api-key", base_url=f"http://ragflow_address/api/v1/chats_openai/<chat_id>")
|
|
|
|
completion = client.chat.completions.create(
|
|
model=model,
|
|
messages=[
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{"role": "user", "content": "Who are you?"},
|
|
{"role": "assistant", "content": "I am an AI assistant named..."},
|
|
{"role": "user", "content": "Can you tell me how to install neovim"},
|
|
],
|
|
stream=True
|
|
)
|
|
|
|
stream = True
|
|
if stream:
|
|
for chunk in completion:
|
|
print(chunk)
|
|
else:
|
|
print(completion.choices[0].message.content)
|
|
"""
|
|
req = request.json
|
|
|
|
messages = req.get("messages", [])
|
|
# To prevent empty [] input
|
|
if len(messages) < 1:
|
|
return get_error_data_result("You have to provide messages.")
|
|
if messages[-1]["role"] != "user":
|
|
return get_error_data_result("The last content of this conversation is not from user.")
|
|
|
|
prompt = messages[-1]["content"]
|
|
# Treat context tokens as reasoning tokens
|
|
context_token_used = sum(len(message["content"]) for message in messages)
|
|
|
|
dia = DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value)
|
|
if not dia:
|
|
return get_error_data_result(f"You don't own the chat {chat_id}")
|
|
dia = dia[0]
|
|
|
|
# Filter system and non-sense assistant messages
|
|
msg = None
|
|
msg = [m for m in messages if m["role"] != "system" and (m["role"] != "assistant" or msg)]
|
|
|
|
if req.get("stream", True):
|
|
# The value for the usage field on all chunks except for the last one will be null.
|
|
# The usage field on the last chunk contains token usage statistics for the entire request.
|
|
# The choices field on the last chunk will always be an empty array [].
|
|
def streamed_response_generator(chat_id, dia, msg):
|
|
token_used = 0
|
|
answer_cache = ""
|
|
reasoning_cache = ""
|
|
response = {
|
|
"id": f"chatcmpl-{chat_id}",
|
|
"choices": [{"delta": {"content": "", "role": "assistant", "function_call": None, "tool_calls": None, "reasoning_content": ""}, "finish_reason": None, "index": 0, "logprobs": None}],
|
|
"created": int(time.time()),
|
|
"model": "model",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "",
|
|
"usage": None,
|
|
}
|
|
|
|
try:
|
|
for ans in chat(dia, msg, True):
|
|
answer = ans["answer"]
|
|
|
|
reasoning_match = re.search(r"<think>(.*?)</think>", answer, flags=re.DOTALL)
|
|
if reasoning_match:
|
|
reasoning_part = reasoning_match.group(1)
|
|
content_part = answer[reasoning_match.end() :]
|
|
else:
|
|
reasoning_part = ""
|
|
content_part = answer
|
|
|
|
reasoning_incremental = ""
|
|
if reasoning_part:
|
|
if reasoning_part.startswith(reasoning_cache):
|
|
reasoning_incremental = reasoning_part.replace(reasoning_cache, "", 1)
|
|
else:
|
|
reasoning_incremental = reasoning_part
|
|
reasoning_cache = reasoning_part
|
|
|
|
content_incremental = ""
|
|
if content_part:
|
|
if content_part.startswith(answer_cache):
|
|
content_incremental = content_part.replace(answer_cache, "", 1)
|
|
else:
|
|
content_incremental = content_part
|
|
answer_cache = content_part
|
|
|
|
token_used += len(reasoning_incremental) + len(content_incremental)
|
|
|
|
if not any([reasoning_incremental, content_incremental]):
|
|
continue
|
|
|
|
if reasoning_incremental:
|
|
response["choices"][0]["delta"]["reasoning_content"] = reasoning_incremental
|
|
else:
|
|
response["choices"][0]["delta"]["reasoning_content"] = None
|
|
|
|
if content_incremental:
|
|
response["choices"][0]["delta"]["content"] = content_incremental
|
|
else:
|
|
response["choices"][0]["delta"]["content"] = None
|
|
|
|
yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n"
|
|
except Exception as e:
|
|
response["choices"][0]["delta"]["content"] = "**ERROR**: " + str(e)
|
|
yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n"
|
|
|
|
# The last chunk
|
|
response["choices"][0]["delta"]["content"] = None
|
|
response["choices"][0]["delta"]["reasoning_content"] = None
|
|
response["choices"][0]["finish_reason"] = "stop"
|
|
response["usage"] = {"prompt_tokens": len(prompt), "completion_tokens": token_used, "total_tokens": len(prompt) + token_used}
|
|
yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n"
|
|
yield "data:[DONE]\n\n"
|
|
|
|
resp = Response(streamed_response_generator(chat_id, dia, msg), mimetype="text/event-stream")
|
|
resp.headers.add_header("Cache-control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
return resp
|
|
else:
|
|
answer = None
|
|
for ans in chat(dia, msg, False):
|
|
# focus answer content only
|
|
answer = ans
|
|
break
|
|
content = answer["answer"]
|
|
|
|
response = {
|
|
"id": f"chatcmpl-{chat_id}",
|
|
"object": "chat.completion",
|
|
"created": int(time.time()),
|
|
"model": req.get("model", ""),
|
|
"usage": {
|
|
"prompt_tokens": len(prompt),
|
|
"completion_tokens": len(content),
|
|
"total_tokens": len(prompt) + len(content),
|
|
"completion_tokens_details": {
|
|
"reasoning_tokens": context_token_used,
|
|
"accepted_prediction_tokens": len(content),
|
|
"rejected_prediction_tokens": 0, # 0 for simplicity
|
|
},
|
|
},
|
|
"choices": [{"message": {"role": "assistant", "content": content}, "logprobs": None, "finish_reason": "stop", "index": 0}],
|
|
}
|
|
return jsonify(response)
|
|
|
|
|
|
@manager.route("/agents/<agent_id>/completions", methods=["POST"]) # noqa: F821
|
|
@token_required
|
|
def agent_completions(tenant_id, agent_id):
|
|
req = request.json
|
|
cvs = UserCanvasService.query(user_id=tenant_id, id=agent_id)
|
|
if not cvs:
|
|
return get_error_data_result(f"You don't own the agent {agent_id}")
|
|
if req.get("session_id"):
|
|
dsl = cvs[0].dsl
|
|
if not isinstance(dsl, str):
|
|
dsl = json.dumps(dsl)
|
|
# canvas = Canvas(dsl, tenant_id)
|
|
# if canvas.get_preset_param():
|
|
# req["question"] = ""
|
|
conv = API4ConversationService.query(id=req["session_id"], dialog_id=agent_id)
|
|
if not conv:
|
|
return get_error_data_result(f"You don't own the session {req['session_id']}")
|
|
# If an update to UserCanvas is detected, update the API4Conversation.dsl
|
|
sync_dsl = req.get("sync_dsl", False)
|
|
if sync_dsl is True and cvs[0].update_time > conv[0].update_time:
|
|
current_dsl = conv[0].dsl
|
|
new_dsl = json.loads(dsl)
|
|
state_fields = ["history", "messages", "path", "reference"]
|
|
states = {field: current_dsl.get(field, []) for field in state_fields}
|
|
current_dsl.update(new_dsl)
|
|
current_dsl.update(states)
|
|
API4ConversationService.update_by_id(req["session_id"], {"dsl": current_dsl})
|
|
else:
|
|
req["question"] = ""
|
|
if req.get("stream", True):
|
|
resp = Response(agent_completion(tenant_id, agent_id, **req), mimetype="text/event-stream")
|
|
resp.headers.add_header("Cache-control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
return resp
|
|
try:
|
|
for answer in agent_completion(tenant_id, agent_id, **req):
|
|
return get_result(data=answer)
|
|
except Exception as e:
|
|
return get_error_data_result(str(e))
|
|
|
|
|
|
@manager.route("/chats/<chat_id>/sessions", methods=["GET"]) # noqa: F821
|
|
@token_required
|
|
def list_session(tenant_id, chat_id):
|
|
if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
|
|
return get_error_data_result(message=f"You don't own the assistant {chat_id}.")
|
|
id = request.args.get("id")
|
|
name = request.args.get("name")
|
|
page_number = int(request.args.get("page", 1))
|
|
items_per_page = int(request.args.get("page_size", 30))
|
|
orderby = request.args.get("orderby", "create_time")
|
|
user_id = request.args.get("user_id")
|
|
if request.args.get("desc") == "False" or request.args.get("desc") == "false":
|
|
desc = False
|
|
else:
|
|
desc = True
|
|
convs = ConversationService.get_list(chat_id, page_number, items_per_page, orderby, desc, id, name, user_id)
|
|
if not convs:
|
|
return get_result(data=[])
|
|
for conv in convs:
|
|
conv["messages"] = conv.pop("message")
|
|
infos = conv["messages"]
|
|
for info in infos:
|
|
if "prompt" in info:
|
|
info.pop("prompt")
|
|
conv["chat_id"] = conv.pop("dialog_id")
|
|
if conv["reference"]:
|
|
messages = conv["messages"]
|
|
message_num = 0
|
|
chunk_num = 0
|
|
while message_num < len(messages):
|
|
if message_num != 0 and messages[message_num]["role"] != "user":
|
|
chunk_list = []
|
|
if "chunks" in conv["reference"][chunk_num]:
|
|
chunks = conv["reference"][chunk_num]["chunks"]
|
|
for chunk in chunks:
|
|
new_chunk = {
|
|
"id": chunk.get("chunk_id", chunk.get("id")),
|
|
"content": chunk.get("content_with_weight", chunk.get("content")),
|
|
"document_id": chunk.get("doc_id", chunk.get("document_id")),
|
|
"document_name": chunk.get("docnm_kwd", chunk.get("document_name")),
|
|
"dataset_id": chunk.get("kb_id", chunk.get("dataset_id")),
|
|
"image_id": chunk.get("image_id", chunk.get("img_id")),
|
|
"positions": chunk.get("positions", chunk.get("position_int")),
|
|
}
|
|
|
|
chunk_list.append(new_chunk)
|
|
chunk_num += 1
|
|
messages[message_num]["reference"] = chunk_list
|
|
message_num += 1
|
|
del conv["reference"]
|
|
return get_result(data=convs)
|
|
|
|
|
|
@manager.route("/agents/<agent_id>/sessions", methods=["GET"]) # noqa: F821
|
|
@token_required
|
|
def list_agent_session(tenant_id, agent_id):
|
|
if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
|
|
return get_error_data_result(message=f"You don't own the agent {agent_id}.")
|
|
id = request.args.get("id")
|
|
user_id = request.args.get("user_id")
|
|
page_number = int(request.args.get("page", 1))
|
|
items_per_page = int(request.args.get("page_size", 30))
|
|
orderby = request.args.get("orderby", "update_time")
|
|
if request.args.get("desc") == "False" or request.args.get("desc") == "false":
|
|
desc = False
|
|
else:
|
|
desc = True
|
|
# dsl defaults to True in all cases except for False and false
|
|
include_dsl = request.args.get("dsl") != "False" and request.args.get("dsl") != "false"
|
|
convs = API4ConversationService.get_list(agent_id, tenant_id, page_number, items_per_page, orderby, desc, id, user_id, include_dsl)
|
|
if not convs:
|
|
return get_result(data=[])
|
|
for conv in convs:
|
|
conv["messages"] = conv.pop("message")
|
|
infos = conv["messages"]
|
|
for info in infos:
|
|
if "prompt" in info:
|
|
info.pop("prompt")
|
|
conv["agent_id"] = conv.pop("dialog_id")
|
|
if conv["reference"]:
|
|
messages = conv["messages"]
|
|
message_num = 0
|
|
chunk_num = 0
|
|
while message_num < len(messages):
|
|
if message_num != 0 and messages[message_num]["role"] != "user":
|
|
chunk_list = []
|
|
if "chunks" in conv["reference"][chunk_num]:
|
|
chunks = conv["reference"][chunk_num]["chunks"]
|
|
for chunk in chunks:
|
|
new_chunk = {
|
|
"id": chunk.get("chunk_id", chunk.get("id")),
|
|
"content": chunk.get("content_with_weight", chunk.get("content")),
|
|
"document_id": chunk.get("doc_id", chunk.get("document_id")),
|
|
"document_name": chunk.get("docnm_kwd", chunk.get("document_name")),
|
|
"dataset_id": chunk.get("kb_id", chunk.get("dataset_id")),
|
|
"image_id": chunk.get("image_id", chunk.get("img_id")),
|
|
"positions": chunk.get("positions", chunk.get("position_int")),
|
|
}
|
|
chunk_list.append(new_chunk)
|
|
chunk_num += 1
|
|
messages[message_num]["reference"] = chunk_list
|
|
message_num += 1
|
|
del conv["reference"]
|
|
return get_result(data=convs)
|
|
|
|
|
|
@manager.route("/chats/<chat_id>/sessions", methods=["DELETE"]) # noqa: F821
|
|
@token_required
|
|
def delete(tenant_id, chat_id):
|
|
if not DialogService.query(id=chat_id, tenant_id=tenant_id, status=StatusEnum.VALID.value):
|
|
return get_error_data_result(message="You don't own the chat")
|
|
req = request.json
|
|
convs = ConversationService.query(dialog_id=chat_id)
|
|
if not req:
|
|
ids = None
|
|
else:
|
|
ids = req.get("ids")
|
|
|
|
if not ids:
|
|
conv_list = []
|
|
for conv in convs:
|
|
conv_list.append(conv.id)
|
|
else:
|
|
conv_list = ids
|
|
for id in conv_list:
|
|
conv = ConversationService.query(id=id, dialog_id=chat_id)
|
|
if not conv:
|
|
return get_error_data_result(message="The chat doesn't own the session")
|
|
ConversationService.delete_by_id(id)
|
|
return get_result()
|
|
|
|
|
|
@manager.route("/agents/<agent_id>/sessions", methods=["DELETE"]) # noqa: F821
|
|
@token_required
|
|
def delete_agent_session(tenant_id, agent_id):
|
|
req = request.json
|
|
cvs = UserCanvasService.query(user_id=tenant_id, id=agent_id)
|
|
if not cvs:
|
|
return get_error_data_result(f"You don't own the agent {agent_id}")
|
|
|
|
convs = API4ConversationService.query(dialog_id=agent_id)
|
|
if not convs:
|
|
return get_error_data_result(f"Agent {agent_id} has no sessions")
|
|
|
|
if not req:
|
|
ids = None
|
|
else:
|
|
ids = req.get("ids")
|
|
|
|
if not ids:
|
|
conv_list = []
|
|
for conv in convs:
|
|
conv_list.append(conv.id)
|
|
else:
|
|
conv_list = ids
|
|
|
|
for session_id in conv_list:
|
|
conv = API4ConversationService.query(id=session_id, dialog_id=agent_id)
|
|
if not conv:
|
|
return get_error_data_result(f"The agent doesn't own the session ${session_id}")
|
|
API4ConversationService.delete_by_id(session_id)
|
|
return get_result()
|
|
|
|
|
|
@manager.route("/sessions/ask", methods=["POST"]) # noqa: F821
|
|
@token_required
|
|
def ask_about(tenant_id):
|
|
req = request.json
|
|
if not req.get("question"):
|
|
return get_error_data_result("`question` is required.")
|
|
if not req.get("dataset_ids"):
|
|
return get_error_data_result("`dataset_ids` is required.")
|
|
if not isinstance(req.get("dataset_ids"), list):
|
|
return get_error_data_result("`dataset_ids` should be a list.")
|
|
req["kb_ids"] = req.pop("dataset_ids")
|
|
for kb_id in req["kb_ids"]:
|
|
if not KnowledgebaseService.accessible(kb_id, tenant_id):
|
|
return get_error_data_result(f"You don't own the dataset {kb_id}.")
|
|
kbs = KnowledgebaseService.query(id=kb_id)
|
|
kb = kbs[0]
|
|
if kb.chunk_num == 0:
|
|
return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
|
|
uid = tenant_id
|
|
|
|
def stream():
|
|
nonlocal req, uid
|
|
try:
|
|
for ans in ask(req["question"], req["kb_ids"], uid):
|
|
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
|
|
except Exception as e:
|
|
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
|
|
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
|
|
|
|
resp = Response(stream(), mimetype="text/event-stream")
|
|
resp.headers.add_header("Cache-control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
return resp
|
|
|
|
|
|
@manager.route("/sessions/related_questions", methods=["POST"]) # noqa: F821
|
|
@token_required
|
|
def related_questions(tenant_id):
|
|
req = request.json
|
|
if not req.get("question"):
|
|
return get_error_data_result("`question` is required.")
|
|
question = req["question"]
|
|
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
|
|
prompt = """
|
|
Objective: To generate search terms related to the user's search keywords, helping users find more valuable information.
|
|
Instructions:
|
|
- Based on the keywords provided by the user, generate 5-10 related search terms.
|
|
- Each search term should be directly or indirectly related to the keyword, guiding the user to find more valuable information.
|
|
- Use common, general terms as much as possible, avoiding obscure words or technical jargon.
|
|
- Keep the term length between 2-4 words, concise and clear.
|
|
- DO NOT translate, use the language of the original keywords.
|
|
|
|
### Example:
|
|
Keywords: Chinese football
|
|
Related search terms:
|
|
1. Current status of Chinese football
|
|
2. Reform of Chinese football
|
|
3. Youth training of Chinese football
|
|
4. Chinese football in the Asian Cup
|
|
5. Chinese football in the World Cup
|
|
|
|
Reason:
|
|
- When searching, users often only use one or two keywords, making it difficult to fully express their information needs.
|
|
- Generating related search terms can help users dig deeper into relevant information and improve search efficiency.
|
|
- At the same time, related terms can also help search engines better understand user needs and return more accurate search results.
|
|
|
|
"""
|
|
ans = chat_mdl.chat(
|
|
prompt,
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": f"""
|
|
Keywords: {question}
|
|
Related search terms:
|
|
""",
|
|
}
|
|
],
|
|
{"temperature": 0.9},
|
|
)
|
|
return get_result(data=[re.sub(r"^[0-9]\. ", "", a) for a in ans.split("\n") if re.match(r"^[0-9]\. ", a)])
|
|
|
|
|
|
@manager.route("/chatbots/<dialog_id>/completions", methods=["POST"]) # noqa: F821
|
|
def chatbot_completions(dialog_id):
|
|
req = request.json
|
|
|
|
token = request.headers.get("Authorization").split()
|
|
if len(token) != 2:
|
|
return get_error_data_result(message='Authorization is not valid!"')
|
|
token = token[1]
|
|
objs = APIToken.query(beta=token)
|
|
if not objs:
|
|
return get_error_data_result(message='Authentication error: API key is invalid!"')
|
|
|
|
if "quote" not in req:
|
|
req["quote"] = False
|
|
|
|
if req.get("stream", True):
|
|
resp = Response(iframe_completion(dialog_id, **req), mimetype="text/event-stream")
|
|
resp.headers.add_header("Cache-control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
return resp
|
|
|
|
for answer in iframe_completion(dialog_id, **req):
|
|
return get_result(data=answer)
|
|
|
|
|
|
@manager.route("/agentbots/<agent_id>/completions", methods=["POST"]) # noqa: F821
|
|
def agent_bot_completions(agent_id):
|
|
req = request.json
|
|
|
|
token = request.headers.get("Authorization").split()
|
|
if len(token) != 2:
|
|
return get_error_data_result(message='Authorization is not valid!"')
|
|
token = token[1]
|
|
objs = APIToken.query(beta=token)
|
|
if not objs:
|
|
return get_error_data_result(message='Authentication error: API key is invalid!"')
|
|
|
|
if "quote" not in req:
|
|
req["quote"] = False
|
|
|
|
if req.get("stream", True):
|
|
resp = Response(agent_completion(objs[0].tenant_id, agent_id, **req), mimetype="text/event-stream")
|
|
resp.headers.add_header("Cache-control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
return resp
|
|
|
|
for answer in agent_completion(objs[0].tenant_id, agent_id, **req):
|
|
return get_result(data=answer)
|