mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-21 05:29:57 +08:00
245 lines
8.2 KiB
Python
245 lines
8.2 KiB
Python
# -*- coding: utf-8 -*-
|
||
import json
|
||
import re
|
||
from elasticsearch_dsl import Q, Search, A
|
||
from typing import List, Optional, Tuple, Dict, Union
|
||
from dataclasses import dataclass
|
||
|
||
from rag.settings import es_logger
|
||
from rag.utils import rmSpace
|
||
from rag.nlp import huqie, query
|
||
import numpy as np
|
||
|
||
|
||
def index_name(uid): return f"ragflow_{uid}"
|
||
|
||
|
||
class Dealer:
|
||
def __init__(self, es):
|
||
self.qryr = query.EsQueryer(es)
|
||
self.qryr.flds = [
|
||
"title_tks^10",
|
||
"title_sm_tks^5",
|
||
"content_ltks^2",
|
||
"content_sm_ltks"]
|
||
self.es = es
|
||
|
||
@dataclass
|
||
class SearchResult:
|
||
total: int
|
||
ids: List[str]
|
||
query_vector: List[float] = None
|
||
field: Optional[Dict] = None
|
||
highlight: Optional[Dict] = None
|
||
aggregation: Union[List, Dict, None] = None
|
||
keywords: Optional[List[str]] = None
|
||
group_docs: List[List] = None
|
||
|
||
def _vector(self, txt, emb_mdl, sim=0.8, topk=10):
|
||
qv, c = emb_mdl.encode_queries(txt)
|
||
return {
|
||
"field": "q_%d_vec"%len(qv),
|
||
"k": topk,
|
||
"similarity": sim,
|
||
"num_candidates": topk*2,
|
||
"query_vector": qv
|
||
}
|
||
|
||
def search(self, req, idxnm, emb_mdl=None):
|
||
qst = req.get("question", "")
|
||
bqry, keywords = self.qryr.question(qst)
|
||
if req.get("kb_ids"):
|
||
bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
|
||
if req.get("doc_ids"):
|
||
bqry.filter.append(Q("terms", doc_id=req["doc_ids"]))
|
||
if "available_int" in req:
|
||
if req["available_int"] == 0: bqry.filter.append(Q("range", available_int={"lt": 1}))
|
||
else: bqry.filter.append(Q("bool", must_not=Q("range", available_int={"lt": 1})))
|
||
bqry.boost = 0.05
|
||
|
||
s = Search()
|
||
pg = int(req.get("page", 1)) - 1
|
||
ps = int(req.get("size", 1000))
|
||
src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id","img_id",
|
||
"image_id", "doc_id", "q_512_vec", "q_768_vec",
|
||
"q_1024_vec", "q_1536_vec", "available_int"])
|
||
|
||
s = s.query(bqry)[pg * ps:(pg + 1) * ps]
|
||
s = s.highlight("content_ltks")
|
||
s = s.highlight("title_ltks")
|
||
if not qst:
|
||
s = s.sort(
|
||
{"create_time": {"order": "desc", "unmapped_type": "date"}})
|
||
|
||
if qst:
|
||
s = s.highlight_options(
|
||
fragment_size=120,
|
||
number_of_fragments=5,
|
||
boundary_scanner_locale="zh-CN",
|
||
boundary_scanner="SENTENCE",
|
||
boundary_chars=",./;:\\!(),。?:!……()——、"
|
||
)
|
||
s = s.to_dict()
|
||
q_vec = []
|
||
if req.get("vector"):
|
||
assert emb_mdl, "No embedding model selected"
|
||
s["knn"] = self._vector(qst, emb_mdl, req.get("similarity", 0.4), ps)
|
||
s["knn"]["filter"] = bqry.to_dict()
|
||
if "highlight" in s: del s["highlight"]
|
||
q_vec = s["knn"]["query_vector"]
|
||
es_logger.info("【Q】: {}".format(json.dumps(s)))
|
||
res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
|
||
es_logger.info("TOTAL: {}".format(self.es.getTotal(res)))
|
||
if self.es.getTotal(res) == 0 and "knn" in s:
|
||
bqry, _ = self.qryr.question(qst, min_match="10%")
|
||
if req.get("kb_ids"):
|
||
bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
|
||
s["query"] = bqry.to_dict()
|
||
s["knn"]["filter"] = bqry.to_dict()
|
||
s["knn"]["similarity"] = 0.7
|
||
res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
|
||
|
||
kwds = set([])
|
||
for k in keywords:
|
||
kwds.add(k)
|
||
for kk in huqie.qieqie(k).split(" "):
|
||
if len(kk) < 2:
|
||
continue
|
||
if kk in kwds:
|
||
continue
|
||
kwds.add(kk)
|
||
|
||
aggs = self.getAggregation(res, "docnm_kwd")
|
||
|
||
return self.SearchResult(
|
||
total=self.es.getTotal(res),
|
||
ids=self.es.getDocIds(res),
|
||
query_vector=q_vec,
|
||
aggregation=aggs,
|
||
highlight=self.getHighlight(res),
|
||
field=self.getFields(res, src),
|
||
keywords=list(kwds)
|
||
)
|
||
|
||
def getAggregation(self, res, g):
|
||
if not "aggregations" in res or "aggs_" + g not in res["aggregations"]:
|
||
return
|
||
bkts = res["aggregations"]["aggs_" + g]["buckets"]
|
||
return [(b["key"], b["doc_count"]) for b in bkts]
|
||
|
||
def getHighlight(self, res):
|
||
def rmspace(line):
|
||
eng = set(list("qwertyuioplkjhgfdsazxcvbnm"))
|
||
r = []
|
||
for t in line.split(" "):
|
||
if not t:
|
||
continue
|
||
if len(r) > 0 and len(
|
||
t) > 0 and r[-1][-1] in eng and t[0] in eng:
|
||
r.append(" ")
|
||
r.append(t)
|
||
r = "".join(r)
|
||
return r
|
||
|
||
ans = {}
|
||
for d in res["hits"]["hits"]:
|
||
hlts = d.get("highlight")
|
||
if not hlts:
|
||
continue
|
||
ans[d["_id"]] = "".join([a for a in list(hlts.items())[0][1]])
|
||
return ans
|
||
|
||
def getFields(self, sres, flds):
|
||
res = {}
|
||
if not flds:
|
||
return {}
|
||
for d in self.es.getSource(sres):
|
||
m = {n: d.get(n) for n in flds if d.get(n) is not None}
|
||
for n, v in m.items():
|
||
if isinstance(v, type([])):
|
||
m[n] = "\t".join([str(vv) for vv in v])
|
||
continue
|
||
if not isinstance(v, type("")):
|
||
m[n] = str(m[n])
|
||
m[n] = rmSpace(m[n])
|
||
|
||
if m:
|
||
res[d["id"]] = m
|
||
return res
|
||
|
||
@staticmethod
|
||
def trans2floats(txt):
|
||
return [float(t) for t in txt.split("\t")]
|
||
|
||
def insert_citations(self, ans, top_idx, sres, emb_mdl,
|
||
vfield="q_vec", cfield="content_ltks"):
|
||
|
||
ins_embd = [Dealer.trans2floats(
|
||
sres.field[sres.ids[i]][vfield]) for i in top_idx]
|
||
ins_tw = [sres.field[sres.ids[i]][cfield].split(" ") for i in top_idx]
|
||
s = 0
|
||
e = 0
|
||
res = ""
|
||
|
||
def citeit():
|
||
nonlocal s, e, ans, res, emb_mdl
|
||
if not ins_embd:
|
||
return
|
||
embd = emb_mdl.encode(ans[s: e])
|
||
sim = self.qryr.hybrid_similarity(embd,
|
||
ins_embd,
|
||
huqie.qie(ans[s:e]).split(" "),
|
||
ins_tw)
|
||
mx = np.max(sim) * 0.99
|
||
if mx < 0.55:
|
||
return
|
||
cita = list(set([top_idx[i]
|
||
for i in range(len(ins_embd)) if sim[i] > mx]))[:4]
|
||
for i in cita:
|
||
res += f"@?{i}?@"
|
||
|
||
return cita
|
||
|
||
punct = set(";。?!!")
|
||
if not self.qryr.isChinese(ans):
|
||
punct.add("?")
|
||
punct.add(".")
|
||
while e < len(ans):
|
||
if e - s < 12 or ans[e] not in punct:
|
||
e += 1
|
||
continue
|
||
if ans[e] == "." and e + \
|
||
1 < len(ans) and re.match(r"[0-9]", ans[e + 1]):
|
||
e += 1
|
||
continue
|
||
if ans[e] == "." and e - 2 >= 0 and ans[e - 2] == "\n":
|
||
e += 1
|
||
continue
|
||
res += ans[s: e]
|
||
citeit()
|
||
res += ans[e]
|
||
e += 1
|
||
s = e
|
||
|
||
if s < len(ans):
|
||
res += ans[s:]
|
||
citeit()
|
||
|
||
return res
|
||
|
||
def rerank(self, sres, query, tkweight=0.3, vtweight=0.7, cfield="content_ltks"):
|
||
ins_embd = [
|
||
Dealer.trans2floats(
|
||
sres.field[i]["q_%d_vec"%len(sres.query_vector)]) for i in sres.ids]
|
||
if not ins_embd:
|
||
return []
|
||
ins_tw = [sres.field[i][cfield].split(" ") for i in sres.ids]
|
||
sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
|
||
ins_embd,
|
||
huqie.qie(query).split(" "),
|
||
ins_tw, tkweight, vtweight)
|
||
return sim, tksim, vtsim
|
||
|
||
|
||
|