mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-22 22:20:07 +08:00

### What problem does this PR solve? _Briefly describe what this PR aims to solve. Include background context that will help reviewers understand the purpose of the PR._ ### Type of change - [x] Performance Improvement --------- Co-authored-by: wangwei <dwxiayi@163.com>
665 lines
27 KiB
Python
665 lines
27 KiB
Python
#
|
|
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import logging
|
|
import os
|
|
import re
|
|
import json
|
|
import time
|
|
import copy
|
|
import infinity
|
|
from infinity.common import ConflictType, InfinityException, SortType
|
|
from infinity.index import IndexInfo, IndexType
|
|
from infinity.connection_pool import ConnectionPool
|
|
from infinity.errors import ErrorCode
|
|
from rag import settings
|
|
from rag.settings import PAGERANK_FLD
|
|
from rag.utils import singleton
|
|
import pandas as pd
|
|
from api.utils.file_utils import get_project_base_directory
|
|
|
|
from rag.utils.doc_store_conn import (
|
|
DocStoreConnection,
|
|
MatchExpr,
|
|
MatchTextExpr,
|
|
MatchDenseExpr,
|
|
FusionExpr,
|
|
OrderByExpr,
|
|
)
|
|
|
|
logger = logging.getLogger('ragflow.infinity_conn')
|
|
|
|
|
|
def equivalent_condition_to_str(condition: dict, table_instance=None) -> str | None:
|
|
assert "_id" not in condition
|
|
clmns = {}
|
|
if table_instance:
|
|
for n, ty, de, _ in table_instance.show_columns().rows():
|
|
clmns[n] = (ty, de)
|
|
|
|
def exists(cln):
|
|
nonlocal clmns
|
|
assert cln in clmns, f"'{cln}' should be in '{clmns}'."
|
|
ty, de = clmns[cln]
|
|
if ty.lower().find("cha"):
|
|
if not de:
|
|
de = ""
|
|
return f" {cln}!='{de}' "
|
|
return f"{cln}!={de}"
|
|
|
|
cond = list()
|
|
for k, v in condition.items():
|
|
if not isinstance(k, str) or k in ["kb_id"] or not v:
|
|
continue
|
|
if isinstance(v, list):
|
|
inCond = list()
|
|
for item in v:
|
|
if isinstance(item, str):
|
|
inCond.append(f"'{item}'")
|
|
else:
|
|
inCond.append(str(item))
|
|
if inCond:
|
|
strInCond = ", ".join(inCond)
|
|
strInCond = f"{k} IN ({strInCond})"
|
|
cond.append(strInCond)
|
|
elif k == "must_not":
|
|
if isinstance(v, dict):
|
|
for kk, vv in v.items():
|
|
if kk == "exists":
|
|
cond.append("NOT (%s)" % exists(vv))
|
|
elif isinstance(v, str):
|
|
cond.append(f"{k}='{v}'")
|
|
elif k == "exists":
|
|
cond.append(exists(v))
|
|
else:
|
|
cond.append(f"{k}={str(v)}")
|
|
return " AND ".join(cond) if cond else "1=1"
|
|
|
|
|
|
def concat_dataframes(df_list: list[pd.DataFrame], selectFields: list[str]) -> pd.DataFrame:
|
|
df_list2 = [df for df in df_list if not df.empty]
|
|
if df_list2:
|
|
return pd.concat(df_list2, axis=0).reset_index(drop=True)
|
|
|
|
schema = []
|
|
for field_name in selectFields:
|
|
if field_name == 'score()': # Workaround: fix schema is changed to score()
|
|
schema.append('SCORE')
|
|
elif field_name == 'similarity()': # Workaround: fix schema is changed to similarity()
|
|
schema.append('SIMILARITY')
|
|
else:
|
|
schema.append(field_name)
|
|
return pd.DataFrame(columns=schema)
|
|
|
|
|
|
@singleton
|
|
class InfinityConnection(DocStoreConnection):
|
|
def __init__(self):
|
|
self.dbName = settings.INFINITY.get("db_name", "default_db")
|
|
infinity_uri = settings.INFINITY["uri"]
|
|
if ":" in infinity_uri:
|
|
host, port = infinity_uri.split(":")
|
|
infinity_uri = infinity.common.NetworkAddress(host, int(port))
|
|
self.connPool = None
|
|
logger.info(f"Use Infinity {infinity_uri} as the doc engine.")
|
|
for _ in range(24):
|
|
try:
|
|
connPool = ConnectionPool(infinity_uri)
|
|
inf_conn = connPool.get_conn()
|
|
res = inf_conn.show_current_node()
|
|
if res.error_code == ErrorCode.OK and res.server_status in ["started", "alive"]:
|
|
self._migrate_db(inf_conn)
|
|
self.connPool = connPool
|
|
connPool.release_conn(inf_conn)
|
|
break
|
|
connPool.release_conn(inf_conn)
|
|
logger.warn(f"Infinity status: {res.server_status}. Waiting Infinity {infinity_uri} to be healthy.")
|
|
time.sleep(5)
|
|
except Exception as e:
|
|
logger.warning(f"{str(e)}. Waiting Infinity {infinity_uri} to be healthy.")
|
|
time.sleep(5)
|
|
if self.connPool is None:
|
|
msg = f"Infinity {infinity_uri} is unhealthy in 120s."
|
|
logger.error(msg)
|
|
raise Exception(msg)
|
|
logger.info(f"Infinity {infinity_uri} is healthy.")
|
|
|
|
def _migrate_db(self, inf_conn):
|
|
inf_db = inf_conn.create_database(self.dbName, ConflictType.Ignore)
|
|
fp_mapping = os.path.join(
|
|
get_project_base_directory(), "conf", "infinity_mapping.json"
|
|
)
|
|
if not os.path.exists(fp_mapping):
|
|
raise Exception(f"Mapping file not found at {fp_mapping}")
|
|
schema = json.load(open(fp_mapping))
|
|
table_names = inf_db.list_tables().table_names
|
|
for table_name in table_names:
|
|
inf_table = inf_db.get_table(table_name)
|
|
index_names = inf_table.list_indexes().index_names
|
|
if "q_vec_idx" not in index_names:
|
|
# Skip tables not created by me
|
|
continue
|
|
column_names = inf_table.show_columns()["name"]
|
|
column_names = set(column_names)
|
|
for field_name, field_info in schema.items():
|
|
if field_name in column_names:
|
|
continue
|
|
res = inf_table.add_columns({field_name: field_info})
|
|
assert res.error_code == infinity.ErrorCode.OK
|
|
logger.info(
|
|
f"INFINITY added following column to table {table_name}: {field_name} {field_info}"
|
|
)
|
|
if field_info["type"] != "varchar" or "analyzer" not in field_info:
|
|
continue
|
|
inf_table.create_index(
|
|
f"text_idx_{field_name}",
|
|
IndexInfo(
|
|
field_name, IndexType.FullText, {"ANALYZER": field_info["analyzer"]}
|
|
),
|
|
ConflictType.Ignore,
|
|
)
|
|
|
|
"""
|
|
Database operations
|
|
"""
|
|
|
|
def dbType(self) -> str:
|
|
return "infinity"
|
|
|
|
def health(self) -> dict:
|
|
"""
|
|
Return the health status of the database.
|
|
"""
|
|
inf_conn = self.connPool.get_conn()
|
|
res = inf_conn.show_current_node()
|
|
self.connPool.release_conn(inf_conn)
|
|
res2 = {
|
|
"type": "infinity",
|
|
"status": "green" if res.error_code == 0 and res.server_status in ["started", "alive"] else "red",
|
|
"error": res.error_msg,
|
|
}
|
|
return res2
|
|
|
|
"""
|
|
Table operations
|
|
"""
|
|
|
|
def createIdx(self, indexName: str, knowledgebaseId: str, vectorSize: int):
|
|
table_name = f"{indexName}_{knowledgebaseId}"
|
|
inf_conn = self.connPool.get_conn()
|
|
inf_db = inf_conn.create_database(self.dbName, ConflictType.Ignore)
|
|
|
|
fp_mapping = os.path.join(
|
|
get_project_base_directory(), "conf", "infinity_mapping.json"
|
|
)
|
|
if not os.path.exists(fp_mapping):
|
|
raise Exception(f"Mapping file not found at {fp_mapping}")
|
|
schema = json.load(open(fp_mapping))
|
|
vector_name = f"q_{vectorSize}_vec"
|
|
schema[vector_name] = {"type": f"vector,{vectorSize},float"}
|
|
inf_table = inf_db.create_table(
|
|
table_name,
|
|
schema,
|
|
ConflictType.Ignore,
|
|
)
|
|
inf_table.create_index(
|
|
"q_vec_idx",
|
|
IndexInfo(
|
|
vector_name,
|
|
IndexType.Hnsw,
|
|
{
|
|
"M": "16",
|
|
"ef_construction": "50",
|
|
"metric": "cosine",
|
|
"encode": "lvq",
|
|
},
|
|
),
|
|
ConflictType.Ignore,
|
|
)
|
|
for field_name, field_info in schema.items():
|
|
if field_info["type"] != "varchar" or "analyzer" not in field_info:
|
|
continue
|
|
inf_table.create_index(
|
|
f"text_idx_{field_name}",
|
|
IndexInfo(
|
|
field_name, IndexType.FullText, {"ANALYZER": field_info["analyzer"]}
|
|
),
|
|
ConflictType.Ignore,
|
|
)
|
|
self.connPool.release_conn(inf_conn)
|
|
logger.info(
|
|
f"INFINITY created table {table_name}, vector size {vectorSize}"
|
|
)
|
|
|
|
def deleteIdx(self, indexName: str, knowledgebaseId: str):
|
|
table_name = f"{indexName}_{knowledgebaseId}"
|
|
inf_conn = self.connPool.get_conn()
|
|
db_instance = inf_conn.get_database(self.dbName)
|
|
db_instance.drop_table(table_name, ConflictType.Ignore)
|
|
self.connPool.release_conn(inf_conn)
|
|
logger.info(f"INFINITY dropped table {table_name}")
|
|
|
|
def indexExist(self, indexName: str, knowledgebaseId: str) -> bool:
|
|
table_name = f"{indexName}_{knowledgebaseId}"
|
|
try:
|
|
inf_conn = self.connPool.get_conn()
|
|
db_instance = inf_conn.get_database(self.dbName)
|
|
_ = db_instance.get_table(table_name)
|
|
self.connPool.release_conn(inf_conn)
|
|
return True
|
|
except Exception as e:
|
|
logger.warning(f"INFINITY indexExist {str(e)}")
|
|
return False
|
|
|
|
"""
|
|
CRUD operations
|
|
"""
|
|
|
|
def search(
|
|
self, selectFields: list[str],
|
|
highlightFields: list[str],
|
|
condition: dict,
|
|
matchExprs: list[MatchExpr],
|
|
orderBy: OrderByExpr,
|
|
offset: int,
|
|
limit: int,
|
|
indexNames: str | list[str],
|
|
knowledgebaseIds: list[str],
|
|
aggFields: list[str] = [],
|
|
rank_feature: dict | None = None
|
|
) -> tuple[pd.DataFrame, int]:
|
|
"""
|
|
TODO: Infinity doesn't provide highlight
|
|
"""
|
|
if isinstance(indexNames, str):
|
|
indexNames = indexNames.split(",")
|
|
assert isinstance(indexNames, list) and len(indexNames) > 0
|
|
inf_conn = self.connPool.get_conn()
|
|
db_instance = inf_conn.get_database(self.dbName)
|
|
df_list = list()
|
|
table_list = list()
|
|
output = selectFields.copy()
|
|
for essential_field in ["id"]:
|
|
if essential_field not in output:
|
|
output.append(essential_field)
|
|
score_func = ""
|
|
score_column = ""
|
|
for matchExpr in matchExprs:
|
|
if isinstance(matchExpr, MatchTextExpr):
|
|
score_func = "score()"
|
|
score_column = "SCORE"
|
|
break
|
|
if not score_func:
|
|
for matchExpr in matchExprs:
|
|
if isinstance(matchExpr, MatchDenseExpr):
|
|
score_func = "similarity()"
|
|
score_column = "SIMILARITY"
|
|
break
|
|
if matchExprs:
|
|
if score_func not in output:
|
|
output.append(score_func)
|
|
if PAGERANK_FLD not in output:
|
|
output.append(PAGERANK_FLD)
|
|
output = [f for f in output if f != "_score"]
|
|
|
|
# Prepare expressions common to all tables
|
|
filter_cond = None
|
|
filter_fulltext = ""
|
|
if condition:
|
|
for indexName in indexNames:
|
|
table_name = f"{indexName}_{knowledgebaseIds[0]}"
|
|
filter_cond = equivalent_condition_to_str(condition, db_instance.get_table(table_name))
|
|
break
|
|
|
|
for matchExpr in matchExprs:
|
|
if isinstance(matchExpr, MatchTextExpr):
|
|
if filter_cond and "filter" not in matchExpr.extra_options:
|
|
matchExpr.extra_options.update({"filter": filter_cond})
|
|
fields = ",".join(matchExpr.fields)
|
|
filter_fulltext = f"filter_fulltext('{fields}', '{matchExpr.matching_text}')"
|
|
if filter_cond:
|
|
filter_fulltext = f"({filter_cond}) AND {filter_fulltext}"
|
|
minimum_should_match = matchExpr.extra_options.get("minimum_should_match", 0.0)
|
|
if isinstance(minimum_should_match, float):
|
|
str_minimum_should_match = str(int(minimum_should_match * 100)) + "%"
|
|
matchExpr.extra_options["minimum_should_match"] = str_minimum_should_match
|
|
for k, v in matchExpr.extra_options.items():
|
|
if not isinstance(v, str):
|
|
matchExpr.extra_options[k] = str(v)
|
|
logger.debug(f"INFINITY search MatchTextExpr: {json.dumps(matchExpr.__dict__)}")
|
|
elif isinstance(matchExpr, MatchDenseExpr):
|
|
if filter_fulltext and "filter" not in matchExpr.extra_options:
|
|
matchExpr.extra_options.update({"filter": filter_fulltext})
|
|
for k, v in matchExpr.extra_options.items():
|
|
if not isinstance(v, str):
|
|
matchExpr.extra_options[k] = str(v)
|
|
similarity = matchExpr.extra_options.get("similarity")
|
|
if similarity:
|
|
matchExpr.extra_options["threshold"] = similarity
|
|
del matchExpr.extra_options["similarity"]
|
|
logger.debug(f"INFINITY search MatchDenseExpr: {json.dumps(matchExpr.__dict__)}")
|
|
elif isinstance(matchExpr, FusionExpr):
|
|
logger.debug(f"INFINITY search FusionExpr: {json.dumps(matchExpr.__dict__)}")
|
|
|
|
order_by_expr_list = list()
|
|
if orderBy.fields:
|
|
for order_field in orderBy.fields:
|
|
if order_field[1] == 0:
|
|
order_by_expr_list.append((order_field[0], SortType.Asc))
|
|
else:
|
|
order_by_expr_list.append((order_field[0], SortType.Desc))
|
|
|
|
total_hits_count = 0
|
|
# Scatter search tables and gather the results
|
|
for indexName in indexNames:
|
|
for knowledgebaseId in knowledgebaseIds:
|
|
table_name = f"{indexName}_{knowledgebaseId}"
|
|
try:
|
|
table_instance = db_instance.get_table(table_name)
|
|
except Exception:
|
|
continue
|
|
table_list.append(table_name)
|
|
builder = table_instance.output(output)
|
|
if len(matchExprs) > 0:
|
|
for matchExpr in matchExprs:
|
|
if isinstance(matchExpr, MatchTextExpr):
|
|
fields = ",".join(matchExpr.fields)
|
|
builder = builder.match_text(
|
|
fields,
|
|
matchExpr.matching_text,
|
|
matchExpr.topn,
|
|
matchExpr.extra_options.copy(),
|
|
)
|
|
elif isinstance(matchExpr, MatchDenseExpr):
|
|
builder = builder.match_dense(
|
|
matchExpr.vector_column_name,
|
|
matchExpr.embedding_data,
|
|
matchExpr.embedding_data_type,
|
|
matchExpr.distance_type,
|
|
matchExpr.topn,
|
|
matchExpr.extra_options.copy(),
|
|
)
|
|
elif isinstance(matchExpr, FusionExpr):
|
|
builder = builder.fusion(
|
|
matchExpr.method, matchExpr.topn, matchExpr.fusion_params
|
|
)
|
|
else:
|
|
if len(filter_cond) > 0:
|
|
builder.filter(filter_cond)
|
|
if orderBy.fields:
|
|
builder.sort(order_by_expr_list)
|
|
builder.offset(offset).limit(limit)
|
|
kb_res, extra_result = builder.option({"total_hits_count": True}).to_df()
|
|
if extra_result:
|
|
total_hits_count += int(extra_result["total_hits_count"])
|
|
logger.debug(f"INFINITY search table: {str(table_name)}, result: {str(kb_res)}")
|
|
df_list.append(kb_res)
|
|
self.connPool.release_conn(inf_conn)
|
|
res = concat_dataframes(df_list, output)
|
|
if matchExprs:
|
|
res['Sum'] = res[score_column] + res[PAGERANK_FLD]
|
|
res = res.sort_values(by='Sum', ascending=False).reset_index(drop=True).drop(columns=['Sum'])
|
|
res = res.head(limit)
|
|
logger.debug(f"INFINITY search final result: {str(res)}")
|
|
return res, total_hits_count
|
|
|
|
def get(
|
|
self, chunkId: str, indexName: str, knowledgebaseIds: list[str]
|
|
) -> dict | None:
|
|
inf_conn = self.connPool.get_conn()
|
|
db_instance = inf_conn.get_database(self.dbName)
|
|
df_list = list()
|
|
assert isinstance(knowledgebaseIds, list)
|
|
table_list = list()
|
|
for knowledgebaseId in knowledgebaseIds:
|
|
table_name = f"{indexName}_{knowledgebaseId}"
|
|
table_list.append(table_name)
|
|
table_instance = None
|
|
try:
|
|
table_instance = db_instance.get_table(table_name)
|
|
except Exception:
|
|
logger.warning(
|
|
f"Table not found: {table_name}, this knowledge base isn't created in Infinity. Maybe it is created in other document engine.")
|
|
continue
|
|
kb_res, _ = table_instance.output(["*"]).filter(f"id = '{chunkId}'").to_df()
|
|
logger.debug(f"INFINITY get table: {str(table_list)}, result: {str(kb_res)}")
|
|
df_list.append(kb_res)
|
|
self.connPool.release_conn(inf_conn)
|
|
res = concat_dataframes(df_list, ["id"])
|
|
res_fields = self.getFields(res, res.columns.tolist())
|
|
return res_fields.get(chunkId, None)
|
|
|
|
def insert(
|
|
self, documents: list[dict], indexName: str, knowledgebaseId: str = None
|
|
) -> list[str]:
|
|
inf_conn = self.connPool.get_conn()
|
|
db_instance = inf_conn.get_database(self.dbName)
|
|
table_name = f"{indexName}_{knowledgebaseId}"
|
|
try:
|
|
table_instance = db_instance.get_table(table_name)
|
|
except InfinityException as e:
|
|
# src/common/status.cppm, kTableNotExist = 3022
|
|
if e.error_code != ErrorCode.TABLE_NOT_EXIST:
|
|
raise
|
|
vector_size = 0
|
|
patt = re.compile(r"q_(?P<vector_size>\d+)_vec")
|
|
for k in documents[0].keys():
|
|
m = patt.match(k)
|
|
if m:
|
|
vector_size = int(m.group("vector_size"))
|
|
break
|
|
if vector_size == 0:
|
|
raise ValueError("Cannot infer vector size from documents")
|
|
self.createIdx(indexName, knowledgebaseId, vector_size)
|
|
table_instance = db_instance.get_table(table_name)
|
|
|
|
# embedding fields can't have a default value....
|
|
embedding_clmns = []
|
|
clmns = table_instance.show_columns().rows()
|
|
for n, ty, _, _ in clmns:
|
|
r = re.search(r"Embedding\([a-z]+,([0-9]+)\)", ty)
|
|
if not r:
|
|
continue
|
|
embedding_clmns.append((n, int(r.group(1))))
|
|
|
|
docs = copy.deepcopy(documents)
|
|
for d in docs:
|
|
assert "_id" not in d
|
|
assert "id" in d
|
|
for k, v in d.items():
|
|
if k in ["important_kwd", "question_kwd", "entities_kwd", "tag_kwd", "source_id"]:
|
|
assert isinstance(v, list)
|
|
d[k] = "###".join(v)
|
|
elif re.search(r"_feas$", k):
|
|
d[k] = json.dumps(v)
|
|
elif k == 'kb_id':
|
|
if isinstance(d[k], list):
|
|
d[k] = d[k][0] # since d[k] is a list, but we need a str
|
|
elif k == "position_int":
|
|
assert isinstance(v, list)
|
|
arr = [num for row in v for num in row]
|
|
d[k] = "_".join(f"{num:08x}" for num in arr)
|
|
elif k in ["page_num_int", "top_int"]:
|
|
assert isinstance(v, list)
|
|
d[k] = "_".join(f"{num:08x}" for num in v)
|
|
|
|
for n, vs in embedding_clmns:
|
|
if n in d:
|
|
continue
|
|
d[n] = [0] * vs
|
|
ids = ["'{}'".format(d["id"]) for d in docs]
|
|
str_ids = ", ".join(ids)
|
|
str_filter = f"id IN ({str_ids})"
|
|
table_instance.delete(str_filter)
|
|
# for doc in documents:
|
|
# logger.info(f"insert position_int: {doc['position_int']}")
|
|
# logger.info(f"InfinityConnection.insert {json.dumps(documents)}")
|
|
table_instance.insert(docs)
|
|
self.connPool.release_conn(inf_conn)
|
|
logger.debug(f"INFINITY inserted into {table_name} {str_ids}.")
|
|
return []
|
|
|
|
def update(
|
|
self, condition: dict, newValue: dict, indexName: str, knowledgebaseId: str
|
|
) -> bool:
|
|
# if 'position_int' in newValue:
|
|
# logger.info(f"update position_int: {newValue['position_int']}")
|
|
inf_conn = self.connPool.get_conn()
|
|
db_instance = inf_conn.get_database(self.dbName)
|
|
table_name = f"{indexName}_{knowledgebaseId}"
|
|
table_instance = db_instance.get_table(table_name)
|
|
#if "exists" in condition:
|
|
# del condition["exists"]
|
|
filter = equivalent_condition_to_str(condition, table_instance)
|
|
for k, v in list(newValue.items()):
|
|
if k in ["important_kwd", "question_kwd", "entities_kwd", "tag_kwd", "source_id"]:
|
|
assert isinstance(v, list)
|
|
newValue[k] = "###".join(v)
|
|
elif re.search(r"_feas$", k):
|
|
newValue[k] = json.dumps(v)
|
|
elif k.endswith("_kwd") and isinstance(v, list):
|
|
newValue[k] = " ".join(v)
|
|
elif k == 'kb_id':
|
|
if isinstance(newValue[k], list):
|
|
newValue[k] = newValue[k][0] # since d[k] is a list, but we need a str
|
|
elif k == "position_int":
|
|
assert isinstance(v, list)
|
|
arr = [num for row in v for num in row]
|
|
newValue[k] = "_".join(f"{num:08x}" for num in arr)
|
|
elif k in ["page_num_int", "top_int"]:
|
|
assert isinstance(v, list)
|
|
newValue[k] = "_".join(f"{num:08x}" for num in v)
|
|
elif k == "remove":
|
|
del newValue[k]
|
|
if v in [PAGERANK_FLD]:
|
|
newValue[v] = 0
|
|
|
|
logger.debug(f"INFINITY update table {table_name}, filter {filter}, newValue {newValue}.")
|
|
table_instance.update(filter, newValue)
|
|
self.connPool.release_conn(inf_conn)
|
|
return True
|
|
|
|
def delete(self, condition: dict, indexName: str, knowledgebaseId: str) -> int:
|
|
inf_conn = self.connPool.get_conn()
|
|
db_instance = inf_conn.get_database(self.dbName)
|
|
table_name = f"{indexName}_{knowledgebaseId}"
|
|
try:
|
|
table_instance = db_instance.get_table(table_name)
|
|
except Exception:
|
|
logger.warning(
|
|
f"Skipped deleting from table {table_name} since the table doesn't exist."
|
|
)
|
|
return 0
|
|
filter = equivalent_condition_to_str(condition, table_instance)
|
|
logger.debug(f"INFINITY delete table {table_name}, filter {filter}.")
|
|
res = table_instance.delete(filter)
|
|
self.connPool.release_conn(inf_conn)
|
|
return res.deleted_rows
|
|
|
|
"""
|
|
Helper functions for search result
|
|
"""
|
|
|
|
def getTotal(self, res: tuple[pd.DataFrame, int] | pd.DataFrame) -> int:
|
|
if isinstance(res, tuple):
|
|
return res[1]
|
|
return len(res)
|
|
|
|
def getChunkIds(self, res: tuple[pd.DataFrame, int] | pd.DataFrame) -> list[str]:
|
|
if isinstance(res, tuple):
|
|
res = res[0]
|
|
return list(res["id"])
|
|
|
|
def getFields(self, res: tuple[pd.DataFrame, int] | pd.DataFrame, fields: list[str]) -> dict[str, dict]:
|
|
if isinstance(res, tuple):
|
|
res = res[0]
|
|
if not fields:
|
|
return {}
|
|
fieldsAll = fields.copy()
|
|
fieldsAll.append('id')
|
|
column_map = {col.lower(): col for col in res.columns}
|
|
matched_columns = {column_map[col.lower()]:col for col in set(fieldsAll) if col.lower() in column_map}
|
|
none_columns = [col for col in set(fieldsAll) if col.lower() not in column_map]
|
|
|
|
res2 = res[matched_columns.keys()]
|
|
res2 = res2.rename(columns=matched_columns)
|
|
res2.drop_duplicates(subset=['id'], inplace=True)
|
|
|
|
for column in res2.columns:
|
|
k = column.lower()
|
|
if k in ["important_kwd", "question_kwd", "entities_kwd", "tag_kwd", "source_id"]:
|
|
res2[column] = res2[column].apply(lambda v:[kwd for kwd in v.split("###") if kwd])
|
|
elif k == "position_int":
|
|
def to_position_int(v):
|
|
if v:
|
|
arr = [int(hex_val, 16) for hex_val in v.split('_')]
|
|
v = [arr[i:i + 5] for i in range(0, len(arr), 5)]
|
|
else:
|
|
v = []
|
|
return v
|
|
res2[column] = res2[column].apply(to_position_int)
|
|
elif k in ["page_num_int", "top_int"]:
|
|
res2[column] = res2[column].apply(lambda v:[int(hex_val, 16) for hex_val in v.split('_')] if v else [])
|
|
else:
|
|
pass
|
|
for column in none_columns:
|
|
res2[column] = None
|
|
|
|
return res2.set_index("id").to_dict(orient="index")
|
|
|
|
def getHighlight(self, res: tuple[pd.DataFrame, int] | pd.DataFrame, keywords: list[str], fieldnm: str):
|
|
if isinstance(res, tuple):
|
|
res = res[0]
|
|
ans = {}
|
|
num_rows = len(res)
|
|
column_id = res["id"]
|
|
if fieldnm not in res:
|
|
return {}
|
|
for i in range(num_rows):
|
|
id = column_id[i]
|
|
txt = res[fieldnm][i]
|
|
txt = re.sub(r"[\r\n]", " ", txt, flags=re.IGNORECASE | re.MULTILINE)
|
|
txts = []
|
|
for t in re.split(r"[.?!;\n]", txt):
|
|
for w in keywords:
|
|
t = re.sub(
|
|
r"(^|[ .?/'\"\(\)!,:;-])(%s)([ .?/'\"\(\)!,:;-])"
|
|
% re.escape(w),
|
|
r"\1<em>\2</em>\3",
|
|
t,
|
|
flags=re.IGNORECASE | re.MULTILINE,
|
|
)
|
|
if not re.search(
|
|
r"<em>[^<>]+</em>", t, flags=re.IGNORECASE | re.MULTILINE
|
|
):
|
|
continue
|
|
txts.append(t)
|
|
ans[id] = "...".join(txts)
|
|
return ans
|
|
|
|
def getAggregation(self, res: tuple[pd.DataFrame, int] | pd.DataFrame, fieldnm: str):
|
|
"""
|
|
TODO: Infinity doesn't provide aggregation
|
|
"""
|
|
return list()
|
|
|
|
"""
|
|
SQL
|
|
"""
|
|
|
|
def sql(sql: str, fetch_size: int, format: str):
|
|
raise NotImplementedError("Not implemented")
|