mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-21 21:50:02 +08:00

### What problem does this PR solve? Removed set_entity and set_relation to avoid accessing doc engine during graph computation. Introduced GraphChange to avoid writing unchanged chunks. ### Type of change - [x] Performance Improvement
155 lines
5.8 KiB
Python
155 lines
5.8 KiB
Python
# Copyright (c) 2024 Microsoft Corporation.
|
|
# Licensed under the MIT License
|
|
"""
|
|
Reference:
|
|
- [graphrag](https://github.com/microsoft/graphrag)
|
|
"""
|
|
|
|
import logging
|
|
import json
|
|
import re
|
|
from typing import Callable
|
|
from dataclasses import dataclass
|
|
import networkx as nx
|
|
import pandas as pd
|
|
from graphrag.general import leiden
|
|
from graphrag.general.community_report_prompt import COMMUNITY_REPORT_PROMPT
|
|
from graphrag.general.extractor import Extractor
|
|
from graphrag.general.leiden import add_community_info2graph
|
|
from rag.llm.chat_model import Base as CompletionLLM
|
|
from graphrag.utils import perform_variable_replacements, dict_has_keys_with_types, chat_limiter
|
|
from rag.utils import num_tokens_from_string
|
|
import trio
|
|
|
|
|
|
@dataclass
|
|
class CommunityReportsResult:
|
|
"""Community reports result class definition."""
|
|
|
|
output: list[str]
|
|
structured_output: list[dict]
|
|
|
|
|
|
class CommunityReportsExtractor(Extractor):
|
|
"""Community reports extractor class definition."""
|
|
|
|
_extraction_prompt: str
|
|
_output_formatter_prompt: str
|
|
_max_report_length: int
|
|
|
|
def __init__(
|
|
self,
|
|
llm_invoker: CompletionLLM,
|
|
max_report_length: int | None = None,
|
|
):
|
|
super().__init__(llm_invoker)
|
|
"""Init method definition."""
|
|
self._llm = llm_invoker
|
|
self._extraction_prompt = COMMUNITY_REPORT_PROMPT
|
|
self._max_report_length = max_report_length or 1500
|
|
|
|
async def __call__(self, graph: nx.Graph, callback: Callable | None = None):
|
|
for node_degree in graph.degree:
|
|
graph.nodes[str(node_degree[0])]["rank"] = int(node_degree[1])
|
|
|
|
communities: dict[str, dict[str, list]] = leiden.run(graph, {})
|
|
total = sum([len(comm.items()) for _, comm in communities.items()])
|
|
res_str = []
|
|
res_dict = []
|
|
over, token_count = 0, 0
|
|
async def extract_community_report(community):
|
|
nonlocal res_str, res_dict, over, token_count
|
|
cm_id, cm = community
|
|
weight = cm["weight"]
|
|
ents = cm["nodes"]
|
|
if len(ents) < 2:
|
|
return
|
|
ent_list = [{"entity": ent, "description": graph.nodes[ent]["description"]} for ent in ents]
|
|
ent_df = pd.DataFrame(ent_list)
|
|
|
|
rela_list = []
|
|
k = 0
|
|
for i in range(0, len(ents)):
|
|
if k >= 10000:
|
|
break
|
|
for j in range(i + 1, len(ents)):
|
|
if k >= 10000:
|
|
break
|
|
edge = graph.get_edge_data(ents[i], ents[j])
|
|
if edge is None:
|
|
continue
|
|
rela_list.append({"source": ents[i], "target": ents[j], "description": edge["description"]})
|
|
k += 1
|
|
rela_df = pd.DataFrame(rela_list)
|
|
|
|
prompt_variables = {
|
|
"entity_df": ent_df.to_csv(index_label="id"),
|
|
"relation_df": rela_df.to_csv(index_label="id")
|
|
}
|
|
text = perform_variable_replacements(self._extraction_prompt, variables=prompt_variables)
|
|
gen_conf = {"temperature": 0.3}
|
|
async with chat_limiter:
|
|
response = await trio.to_thread.run_sync(lambda: self._chat(text, [{"role": "user", "content": "Output:"}], gen_conf))
|
|
token_count += num_tokens_from_string(text + response)
|
|
response = re.sub(r"^[^\{]*", "", response)
|
|
response = re.sub(r"[^\}]*$", "", response)
|
|
response = re.sub(r"\{\{", "{", response)
|
|
response = re.sub(r"\}\}", "}", response)
|
|
logging.debug(response)
|
|
try:
|
|
response = json.loads(response)
|
|
except json.JSONDecodeError as e:
|
|
logging.error(f"Failed to parse JSON response: {e}")
|
|
logging.error(f"Response content: {response}")
|
|
return
|
|
if not dict_has_keys_with_types(response, [
|
|
("title", str),
|
|
("summary", str),
|
|
("findings", list),
|
|
("rating", float),
|
|
("rating_explanation", str),
|
|
]):
|
|
return
|
|
response["weight"] = weight
|
|
response["entities"] = ents
|
|
add_community_info2graph(graph, ents, response["title"])
|
|
res_str.append(self._get_text_output(response))
|
|
res_dict.append(response)
|
|
over += 1
|
|
if callback:
|
|
callback(msg=f"Communities: {over}/{total}, used tokens: {token_count}")
|
|
|
|
st = trio.current_time()
|
|
async with trio.open_nursery() as nursery:
|
|
for level, comm in communities.items():
|
|
logging.info(f"Level {level}: Community: {len(comm.keys())}")
|
|
for community in comm.items():
|
|
nursery.start_soon(lambda: extract_community_report(community))
|
|
if callback:
|
|
callback(msg=f"Community reports done in {trio.current_time() - st:.2f}s, used tokens: {token_count}")
|
|
|
|
return CommunityReportsResult(
|
|
structured_output=res_dict,
|
|
output=res_str,
|
|
)
|
|
|
|
def _get_text_output(self, parsed_output: dict) -> str:
|
|
title = parsed_output.get("title", "Report")
|
|
summary = parsed_output.get("summary", "")
|
|
findings = parsed_output.get("findings", [])
|
|
|
|
def finding_summary(finding: dict):
|
|
if isinstance(finding, str):
|
|
return finding
|
|
return finding.get("summary")
|
|
|
|
def finding_explanation(finding: dict):
|
|
if isinstance(finding, str):
|
|
return ""
|
|
return finding.get("explanation")
|
|
|
|
report_sections = "\n\n".join(
|
|
f"## {finding_summary(f)}\n\n{finding_explanation(f)}" for f in findings
|
|
)
|
|
return f"# {title}\n\n{summary}\n\n{report_sections}"
|