mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-05-26 08:09:09 +08:00

### What problem does this PR solve? #918 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
157 lines
6.3 KiB
Python
157 lines
6.3 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import re
|
|
from functools import partial
|
|
|
|
import pandas as pd
|
|
|
|
from api.db import LLMType
|
|
from api.db.services.llm_service import LLMBundle
|
|
from api.settings import retrievaler
|
|
from graph.component.base import ComponentBase, ComponentParamBase
|
|
|
|
|
|
class GenerateParam(ComponentParamBase):
|
|
"""
|
|
Define the Generate component parameters.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.llm_id = ""
|
|
self.prompt = ""
|
|
self.max_tokens = 256
|
|
self.temperature = 0.1
|
|
self.top_p = 0.3
|
|
self.presence_penalty = 0.4
|
|
self.frequency_penalty = 0.7
|
|
self.cite = True
|
|
#self.parameters = []
|
|
|
|
def check(self):
|
|
self.check_decimal_float(self.temperature, "Temperature")
|
|
self.check_decimal_float(self.presence_penalty, "Presence penalty")
|
|
self.check_decimal_float(self.frequency_penalty, "Frequency penalty")
|
|
self.check_positive_number(self.max_tokens, "Max tokens")
|
|
self.check_decimal_float(self.top_p, "Top P")
|
|
self.check_empty(self.llm_id, "LLM")
|
|
#self.check_defined_type(self.parameters, "Parameters", ["list"])
|
|
|
|
def gen_conf(self):
|
|
return {
|
|
"max_tokens": self.max_tokens,
|
|
"temperature": self.temperature,
|
|
"top_p": self.top_p,
|
|
"presence_penalty": self.presence_penalty,
|
|
"frequency_penalty": self.frequency_penalty,
|
|
}
|
|
|
|
|
|
class Generate(ComponentBase):
|
|
component_name = "Generate"
|
|
|
|
def _run(self, history, **kwargs):
|
|
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
|
|
prompt = self._param.prompt
|
|
|
|
retrieval_res = self.get_input()
|
|
input = "\n- ".join(retrieval_res["content"])
|
|
|
|
|
|
kwargs["input"] = input
|
|
for n, v in kwargs.items():
|
|
#prompt = re.sub(r"\{%s\}"%n, re.escape(str(v)), prompt)
|
|
prompt = re.sub(r"\{%s\}"%n, str(v), prompt)
|
|
|
|
if kwargs.get("stream"):
|
|
return partial(self.stream_output, chat_mdl, prompt, retrieval_res)
|
|
|
|
if "empty_response" in retrieval_res.columns:
|
|
return Generate.be_output(input)
|
|
|
|
ans = chat_mdl.chat(prompt, self._canvas.get_history(self._param.message_history_window_size), self._param.gen_conf())
|
|
|
|
if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
|
|
ans, idx = retrievaler.insert_citations(ans,
|
|
[ck["content_ltks"]
|
|
for _, ck in retrieval_res.iterrows()],
|
|
[ck["vector"]
|
|
for _,ck in retrieval_res.iterrows()],
|
|
LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, self._canvas.get_embedding_model()),
|
|
tkweight=0.7,
|
|
vtweight=0.3)
|
|
del retrieval_res["vector"]
|
|
retrieval_res = retrieval_res.to_dict("records")
|
|
df = []
|
|
for i in idx:
|
|
df.append(retrieval_res[int(i)])
|
|
r = re.search(r"^((.|[\r\n])*? ##%s\$\$)"%str(i), ans)
|
|
assert r, f"{i} => {ans}"
|
|
df[-1]["content"] = r.group(1)
|
|
ans = re.sub(r"^((.|[\r\n])*? ##%s\$\$)" % str(i), "", ans)
|
|
if ans: df.append({"content": ans})
|
|
return pd.DataFrame(df)
|
|
|
|
return Generate.be_output(ans)
|
|
|
|
def stream_output(self, chat_mdl, prompt, retrieval_res):
|
|
res = None
|
|
if "empty_response" in retrieval_res.columns and "\n- ".join(retrieval_res["content"]):
|
|
res = {"content": "\n- ".join(retrieval_res["content"]), "reference": []}
|
|
yield res
|
|
self.set_output(res)
|
|
return
|
|
|
|
answer = ""
|
|
for ans in chat_mdl.chat_streamly(prompt, self._canvas.get_history(self._param.message_history_window_size), self._param.gen_conf()):
|
|
res = {"content": ans, "reference": []}
|
|
answer = ans
|
|
yield res
|
|
|
|
if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
|
|
answer, idx = retrievaler.insert_citations(answer,
|
|
[ck["content_ltks"]
|
|
for _, ck in retrieval_res.iterrows()],
|
|
[ck["vector"]
|
|
for _, ck in retrieval_res.iterrows()],
|
|
LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, self._canvas.get_embedding_model()),
|
|
tkweight=0.7,
|
|
vtweight=0.3)
|
|
doc_ids = set([])
|
|
recall_docs = []
|
|
for i in idx:
|
|
did = retrieval_res.loc[int(i), "doc_id"]
|
|
if did in doc_ids: continue
|
|
doc_ids.add(did)
|
|
recall_docs.append({"doc_id": did, "doc_name": retrieval_res.loc[int(i), "docnm_kwd"]})
|
|
|
|
del retrieval_res["vector"]
|
|
del retrieval_res["content_ltks"]
|
|
|
|
reference = {
|
|
"chunks": [ck.to_dict() for _, ck in retrieval_res.iterrows()],
|
|
"doc_aggs": recall_docs
|
|
}
|
|
|
|
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
|
|
answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
|
|
res = {"content": answer, "reference": reference}
|
|
yield res
|
|
|
|
self.set_output(res)
|
|
|
|
|