mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-22 14:10:01 +08:00

### What problem does this PR solve? #6247 ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue)
114 lines
4.3 KiB
Python
114 lines
4.3 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import logging
|
|
from abc import ABC
|
|
|
|
import pandas as pd
|
|
|
|
from api.db import LLMType
|
|
from api.db.services.knowledgebase_service import KnowledgebaseService
|
|
from api.db.services.llm_service import LLMBundle
|
|
from api import settings
|
|
from agent.component.base import ComponentBase, ComponentParamBase
|
|
from rag.app.tag import label_question
|
|
from rag.utils.tavily_conn import Tavily
|
|
|
|
|
|
class RetrievalParam(ComponentParamBase):
|
|
|
|
"""
|
|
Define the Retrieval component parameters.
|
|
"""
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.similarity_threshold = 0.2
|
|
self.keywords_similarity_weight = 0.5
|
|
self.top_n = 8
|
|
self.top_k = 1024
|
|
self.kb_ids = []
|
|
self.rerank_id = ""
|
|
self.empty_response = ""
|
|
self.tavily_api_key = ""
|
|
self.use_kg = False
|
|
|
|
def check(self):
|
|
self.check_decimal_float(self.similarity_threshold, "[Retrieval] Similarity threshold")
|
|
self.check_decimal_float(self.keywords_similarity_weight, "[Retrieval] Keyword similarity weight")
|
|
self.check_positive_number(self.top_n, "[Retrieval] Top N")
|
|
|
|
|
|
class Retrieval(ComponentBase, ABC):
|
|
component_name = "Retrieval"
|
|
|
|
def _run(self, history, **kwargs):
|
|
query = self.get_input()
|
|
query = str(query["content"][0]) if "content" in query else ""
|
|
lines = query.split('\n')
|
|
query = lines[-1] if lines else ""
|
|
kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids)
|
|
if not kbs:
|
|
return Retrieval.be_output("")
|
|
|
|
embd_nms = list(set([kb.embd_id for kb in kbs]))
|
|
assert len(embd_nms) == 1, "Knowledge bases use different embedding models."
|
|
|
|
embd_mdl = None
|
|
if embd_nms:
|
|
embd_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, embd_nms[0])
|
|
self._canvas.set_embedding_model(embd_nms[0])
|
|
|
|
rerank_mdl = None
|
|
if self._param.rerank_id:
|
|
rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
|
|
|
|
if kbs:
|
|
kbinfos = settings.retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids,
|
|
1, self._param.top_n,
|
|
self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight,
|
|
aggs=False, rerank_mdl=rerank_mdl,
|
|
rank_feature=label_question(query, kbs))
|
|
else:
|
|
kbinfos = {"chunks": [], "doc_aggs": []}
|
|
|
|
if self._param.use_kg and kbs:
|
|
ck = settings.kg_retrievaler.retrieval(query,
|
|
[kbs[0].tenant_id],
|
|
self._param.kb_ids,
|
|
embd_mdl,
|
|
LLMBundle(kbs[0].tenant_id, LLMType.CHAT))
|
|
if ck["content_with_weight"]:
|
|
kbinfos["chunks"].insert(0, ck)
|
|
|
|
if self._param.tavily_api_key:
|
|
tav = Tavily(self._param.tavily_api_key)
|
|
tav_res = tav.retrieve_chunks(query)
|
|
kbinfos["chunks"].extend(tav_res["chunks"])
|
|
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
|
|
|
|
if not kbinfos["chunks"]:
|
|
df = Retrieval.be_output("")
|
|
if self._param.empty_response and self._param.empty_response.strip():
|
|
df["empty_response"] = self._param.empty_response
|
|
return df
|
|
|
|
df = pd.DataFrame(kbinfos["chunks"])
|
|
df["content"] = df["content_with_weight"]
|
|
del df["content_with_weight"]
|
|
logging.debug("{} {}".format(query, df))
|
|
return df.dropna()
|
|
|
|
|