mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-22 06:00:00 +08:00

### What problem does this PR solve? ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue)
378 lines
14 KiB
Python
378 lines
14 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import json
|
|
import re
|
|
import traceback
|
|
from copy import deepcopy
|
|
from api.db.services.user_service import UserTenantService
|
|
from flask import request, Response
|
|
from flask_login import login_required, current_user
|
|
|
|
from api.db import LLMType
|
|
from api.db.services.dialog_service import DialogService, ConversationService, chat, ask
|
|
from api.db.services.knowledgebase_service import KnowledgebaseService
|
|
from api.db.services.llm_service import LLMBundle, TenantService, TenantLLMService
|
|
from api.settings import RetCode, retrievaler
|
|
from api.utils import get_uuid
|
|
from api.utils.api_utils import get_json_result
|
|
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
|
from graphrag.mind_map_extractor import MindMapExtractor
|
|
|
|
|
|
@manager.route('/set', methods=['POST'])
|
|
@login_required
|
|
def set_conversation():
|
|
req = request.json
|
|
conv_id = req.get("conversation_id")
|
|
if conv_id:
|
|
del req["conversation_id"]
|
|
try:
|
|
if not ConversationService.update_by_id(conv_id, req):
|
|
return get_data_error_result(retmsg="Conversation not found!")
|
|
e, conv = ConversationService.get_by_id(conv_id)
|
|
if not e:
|
|
return get_data_error_result(
|
|
retmsg="Fail to update a conversation!")
|
|
conv = conv.to_dict()
|
|
return get_json_result(data=conv)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
try:
|
|
e, dia = DialogService.get_by_id(req["dialog_id"])
|
|
if not e:
|
|
return get_data_error_result(retmsg="Dialog not found")
|
|
conv = {
|
|
"id": get_uuid(),
|
|
"dialog_id": req["dialog_id"],
|
|
"name": req.get("name", "New conversation"),
|
|
"message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]
|
|
}
|
|
ConversationService.save(**conv)
|
|
e, conv = ConversationService.get_by_id(conv["id"])
|
|
if not e:
|
|
return get_data_error_result(retmsg="Fail to new a conversation!")
|
|
conv = conv.to_dict()
|
|
return get_json_result(data=conv)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/get', methods=['GET'])
|
|
@login_required
|
|
def get():
|
|
conv_id = request.args["conversation_id"]
|
|
try:
|
|
e, conv = ConversationService.get_by_id(conv_id)
|
|
if not e:
|
|
return get_data_error_result(retmsg="Conversation not found!")
|
|
tenants = UserTenantService.query(user_id=current_user.id)
|
|
for tenant in tenants:
|
|
if DialogService.query(tenant_id=tenant.tenant_id, id=conv.dialog_id):
|
|
break
|
|
else:
|
|
return get_json_result(
|
|
data=False, retmsg=f'Only owner of conversation authorized for this operation.',
|
|
retcode=RetCode.OPERATING_ERROR)
|
|
conv = conv.to_dict()
|
|
return get_json_result(data=conv)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/rm', methods=['POST'])
|
|
@login_required
|
|
def rm():
|
|
conv_ids = request.json["conversation_ids"]
|
|
try:
|
|
for cid in conv_ids:
|
|
exist, conv = ConversationService.get_by_id(cid)
|
|
if not exist:
|
|
return get_data_error_result(retmsg="Conversation not found!")
|
|
tenants = UserTenantService.query(user_id=current_user.id)
|
|
for tenant in tenants:
|
|
if DialogService.query(tenant_id=tenant.tenant_id, id=conv.dialog_id):
|
|
break
|
|
else:
|
|
return get_json_result(
|
|
data=False, retmsg=f'Only owner of conversation authorized for this operation.',
|
|
retcode=RetCode.OPERATING_ERROR)
|
|
ConversationService.delete_by_id(cid)
|
|
return get_json_result(data=True)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/list', methods=['GET'])
|
|
@login_required
|
|
def list_convsersation():
|
|
dialog_id = request.args["dialog_id"]
|
|
try:
|
|
if not DialogService.query(tenant_id=current_user.id, id=dialog_id):
|
|
return get_json_result(
|
|
data=False, retmsg=f'Only owner of dialog authorized for this operation.',
|
|
retcode=RetCode.OPERATING_ERROR)
|
|
convs = ConversationService.query(
|
|
dialog_id=dialog_id,
|
|
order_by=ConversationService.model.create_time,
|
|
reverse=True)
|
|
convs = [d.to_dict() for d in convs]
|
|
return get_json_result(data=convs)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/completion', methods=['POST'])
|
|
@login_required
|
|
@validate_request("conversation_id", "messages")
|
|
def completion():
|
|
req = request.json
|
|
# req = {"conversation_id": "9aaaca4c11d311efa461fa163e197198", "messages": [
|
|
# {"role": "user", "content": "上海有吗?"}
|
|
# ]}
|
|
msg = []
|
|
for m in req["messages"]:
|
|
if m["role"] == "system":
|
|
continue
|
|
if m["role"] == "assistant" and not msg:
|
|
continue
|
|
msg.append(m)
|
|
message_id = msg[-1].get("id")
|
|
try:
|
|
e, conv = ConversationService.get_by_id(req["conversation_id"])
|
|
if not e:
|
|
return get_data_error_result(retmsg="Conversation not found!")
|
|
conv.message = deepcopy(req["messages"])
|
|
e, dia = DialogService.get_by_id(conv.dialog_id)
|
|
if not e:
|
|
return get_data_error_result(retmsg="Dialog not found!")
|
|
del req["conversation_id"]
|
|
del req["messages"]
|
|
|
|
if not conv.reference:
|
|
conv.reference = []
|
|
conv.message.append({"role": "assistant", "content": "", "id": message_id})
|
|
conv.reference.append({"chunks": [], "doc_aggs": []})
|
|
|
|
def fillin_conv(ans):
|
|
nonlocal conv, message_id
|
|
if not conv.reference:
|
|
conv.reference.append(ans["reference"])
|
|
else:
|
|
conv.reference[-1] = ans["reference"]
|
|
conv.message[-1] = {"role": "assistant", "content": ans["answer"],
|
|
"id": message_id, "prompt": ans.get("prompt", "")}
|
|
ans["id"] = message_id
|
|
|
|
def stream():
|
|
nonlocal dia, msg, req, conv
|
|
try:
|
|
for ans in chat(dia, msg, True, **req):
|
|
fillin_conv(ans)
|
|
yield "data:" + json.dumps({"retcode": 0, "retmsg": "", "data": ans}, ensure_ascii=False) + "\n\n"
|
|
ConversationService.update_by_id(conv.id, conv.to_dict())
|
|
except Exception as e:
|
|
yield "data:" + json.dumps({"retcode": 500, "retmsg": str(e),
|
|
"data": {"answer": "**ERROR**: " + str(e), "reference": []}},
|
|
ensure_ascii=False) + "\n\n"
|
|
yield "data:" + json.dumps({"retcode": 0, "retmsg": "", "data": True}, ensure_ascii=False) + "\n\n"
|
|
|
|
if req.get("stream", True):
|
|
resp = Response(stream(), mimetype="text/event-stream")
|
|
resp.headers.add_header("Cache-control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
return resp
|
|
|
|
else:
|
|
answer = None
|
|
for ans in chat(dia, msg, **req):
|
|
answer = ans
|
|
fillin_conv(ans)
|
|
ConversationService.update_by_id(conv.id, conv.to_dict())
|
|
break
|
|
return get_json_result(data=answer)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/tts', methods=['POST'])
|
|
@login_required
|
|
def tts():
|
|
req = request.json
|
|
text = req["text"]
|
|
|
|
tenants = TenantService.get_by_user_id(current_user.id)
|
|
if not tenants:
|
|
return get_data_error_result(retmsg="Tenant not found!")
|
|
|
|
tts_id = tenants[0]["tts_id"]
|
|
if not tts_id:
|
|
return get_data_error_result(retmsg="No default TTS model is set")
|
|
|
|
tts_mdl = LLMBundle(tenants[0]["tenant_id"], LLMType.TTS, tts_id)
|
|
|
|
def stream_audio():
|
|
try:
|
|
for txt in re.split(r"[,。/《》?;:!\n\r:;]+", text):
|
|
for chunk in tts_mdl.tts(txt):
|
|
yield chunk
|
|
except Exception as e:
|
|
yield ("data:" + json.dumps({"retcode": 500, "retmsg": str(e),
|
|
"data": {"answer": "**ERROR**: " + str(e)}},
|
|
ensure_ascii=False)).encode('utf-8')
|
|
|
|
resp = Response(stream_audio(), mimetype="audio/mpeg")
|
|
resp.headers.add_header("Cache-Control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
|
|
return resp
|
|
|
|
|
|
@manager.route('/delete_msg', methods=['POST'])
|
|
@login_required
|
|
@validate_request("conversation_id", "message_id")
|
|
def delete_msg():
|
|
req = request.json
|
|
e, conv = ConversationService.get_by_id(req["conversation_id"])
|
|
if not e:
|
|
return get_data_error_result(retmsg="Conversation not found!")
|
|
|
|
conv = conv.to_dict()
|
|
for i, msg in enumerate(conv["message"]):
|
|
if req["message_id"] != msg.get("id", ""):
|
|
continue
|
|
assert conv["message"][i + 1]["id"] == req["message_id"]
|
|
conv["message"].pop(i)
|
|
conv["message"].pop(i)
|
|
conv["reference"].pop(max(0, i // 2 - 1))
|
|
break
|
|
|
|
ConversationService.update_by_id(conv["id"], conv)
|
|
return get_json_result(data=conv)
|
|
|
|
|
|
@manager.route('/thumbup', methods=['POST'])
|
|
@login_required
|
|
@validate_request("conversation_id", "message_id")
|
|
def thumbup():
|
|
req = request.json
|
|
e, conv = ConversationService.get_by_id(req["conversation_id"])
|
|
if not e:
|
|
return get_data_error_result(retmsg="Conversation not found!")
|
|
up_down = req.get("set")
|
|
feedback = req.get("feedback", "")
|
|
conv = conv.to_dict()
|
|
for i, msg in enumerate(conv["message"]):
|
|
if req["message_id"] == msg.get("id", "") and msg.get("role", "") == "assistant":
|
|
if up_down:
|
|
msg["thumbup"] = True
|
|
if "feedback" in msg: del msg["feedback"]
|
|
else:
|
|
msg["thumbup"] = False
|
|
if feedback: msg["feedback"] = feedback
|
|
break
|
|
|
|
ConversationService.update_by_id(conv["id"], conv)
|
|
return get_json_result(data=conv)
|
|
|
|
|
|
@manager.route('/ask', methods=['POST'])
|
|
@login_required
|
|
@validate_request("question", "kb_ids")
|
|
def ask_about():
|
|
req = request.json
|
|
uid = current_user.id
|
|
def stream():
|
|
nonlocal req, uid
|
|
try:
|
|
for ans in ask(req["question"], req["kb_ids"], uid):
|
|
yield "data:" + json.dumps({"retcode": 0, "retmsg": "", "data": ans}, ensure_ascii=False) + "\n\n"
|
|
except Exception as e:
|
|
yield "data:" + json.dumps({"retcode": 500, "retmsg": str(e),
|
|
"data": {"answer": "**ERROR**: " + str(e), "reference": []}},
|
|
ensure_ascii=False) + "\n\n"
|
|
yield "data:" + json.dumps({"retcode": 0, "retmsg": "", "data": True}, ensure_ascii=False) + "\n\n"
|
|
|
|
resp = Response(stream(), mimetype="text/event-stream")
|
|
resp.headers.add_header("Cache-control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
return resp
|
|
|
|
|
|
@manager.route('/mindmap', methods=['POST'])
|
|
@login_required
|
|
@validate_request("question", "kb_ids")
|
|
def mindmap():
|
|
req = request.json
|
|
kb_ids = req["kb_ids"]
|
|
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
|
|
if not e:
|
|
return get_data_error_result(retmsg="Knowledgebase not found!")
|
|
|
|
embd_mdl = TenantLLMService.model_instance(
|
|
kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
|
|
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT)
|
|
ranks = retrievaler.retrieval(req["question"], embd_mdl, kb.tenant_id, kb_ids, 1, 12,
|
|
0.3, 0.3, aggs=False)
|
|
mindmap = MindMapExtractor(chat_mdl)
|
|
mind_map = mindmap([c["content_with_weight"] for c in ranks["chunks"]]).output
|
|
if "error" in mind_map:
|
|
return server_error_response(Exception(mind_map["error"]))
|
|
return get_json_result(data=mind_map)
|
|
|
|
|
|
@manager.route('/related_questions', methods=['POST'])
|
|
@login_required
|
|
@validate_request("question")
|
|
def related_questions():
|
|
req = request.json
|
|
question = req["question"]
|
|
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT)
|
|
prompt = """
|
|
Objective: To generate search terms related to the user's search keywords, helping users find more valuable information.
|
|
Instructions:
|
|
- Based on the keywords provided by the user, generate 5-10 related search terms.
|
|
- Each search term should be directly or indirectly related to the keyword, guiding the user to find more valuable information.
|
|
- Use common, general terms as much as possible, avoiding obscure words or technical jargon.
|
|
- Keep the term length between 2-4 words, concise and clear.
|
|
- DO NOT translate, use the language of the original keywords.
|
|
|
|
### Example:
|
|
Keywords: Chinese football
|
|
Related search terms:
|
|
1. Current status of Chinese football
|
|
2. Reform of Chinese football
|
|
3. Youth training of Chinese football
|
|
4. Chinese football in the Asian Cup
|
|
5. Chinese football in the World Cup
|
|
|
|
Reason:
|
|
- When searching, users often only use one or two keywords, making it difficult to fully express their information needs.
|
|
- Generating related search terms can help users dig deeper into relevant information and improve search efficiency.
|
|
- At the same time, related terms can also help search engines better understand user needs and return more accurate search results.
|
|
|
|
"""
|
|
ans = chat_mdl.chat(prompt, [{"role": "user", "content": f"""
|
|
Keywords: {question}
|
|
Related search terms:
|
|
"""}], {"temperature": 0.9})
|
|
return get_json_result(data=[re.sub(r"^[0-9]\. ", "", a) for a in ans.split("\n") if re.match(r"^[0-9]\. ", a)])
|