mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-22 06:00:00 +08:00

### What problem does this PR solve? Rework task executor heartbeat, and print in console. ### Type of change - [ ] Bug Fix (non-breaking change which fixes an issue) - [x] New Feature (non-breaking change which adds functionality) - [ ] Documentation Update - [ ] Refactoring - [ ] Performance Improvement - [ ] Other (please describe):
473 lines
18 KiB
Python
473 lines
18 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import logging
|
|
import sys
|
|
from api.utils.log_utils import initRootLogger
|
|
CONSUMER_NO = "0" if len(sys.argv) < 2 else sys.argv[1]
|
|
initRootLogger(f"task_executor_{CONSUMER_NO}")
|
|
for module in ["pdfminer"]:
|
|
module_logger = logging.getLogger(module)
|
|
module_logger.setLevel(logging.WARNING)
|
|
for module in ["peewee"]:
|
|
module_logger = logging.getLogger(module)
|
|
module_logger.handlers.clear()
|
|
module_logger.propagate = True
|
|
|
|
from datetime import datetime
|
|
import json
|
|
import os
|
|
import hashlib
|
|
import copy
|
|
import re
|
|
import sys
|
|
import time
|
|
import threading
|
|
from functools import partial
|
|
from io import BytesIO
|
|
from multiprocessing.context import TimeoutError
|
|
from timeit import default_timer as timer
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
|
|
from api.db import LLMType, ParserType
|
|
from api.db.services.dialog_service import keyword_extraction, question_proposal
|
|
from api.db.services.document_service import DocumentService
|
|
from api.db.services.llm_service import LLMBundle
|
|
from api.db.services.task_service import TaskService
|
|
from api.db.services.file2document_service import File2DocumentService
|
|
from api.settings import retrievaler, docStoreConn
|
|
from api.db.db_models import close_connection
|
|
from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one, audio, knowledge_graph, email
|
|
from rag.nlp import search, rag_tokenizer
|
|
from rag.raptor import RecursiveAbstractiveProcessing4TreeOrganizedRetrieval as Raptor
|
|
from rag.settings import DOC_MAXIMUM_SIZE, SVR_QUEUE_NAME
|
|
from rag.utils import rmSpace, num_tokens_from_string
|
|
from rag.utils.redis_conn import REDIS_CONN, Payload
|
|
from rag.utils.storage_factory import STORAGE_IMPL
|
|
|
|
BATCH_SIZE = 64
|
|
|
|
FACTORY = {
|
|
"general": naive,
|
|
ParserType.NAIVE.value: naive,
|
|
ParserType.PAPER.value: paper,
|
|
ParserType.BOOK.value: book,
|
|
ParserType.PRESENTATION.value: presentation,
|
|
ParserType.MANUAL.value: manual,
|
|
ParserType.LAWS.value: laws,
|
|
ParserType.QA.value: qa,
|
|
ParserType.TABLE.value: table,
|
|
ParserType.RESUME.value: resume,
|
|
ParserType.PICTURE.value: picture,
|
|
ParserType.ONE.value: one,
|
|
ParserType.AUDIO.value: audio,
|
|
ParserType.EMAIL.value: email,
|
|
ParserType.KG.value: knowledge_graph
|
|
}
|
|
|
|
CONSUMER_NAME = "task_consumer_" + CONSUMER_NO
|
|
PAYLOAD: Payload | None = None
|
|
BOOT_AT = datetime.now().isoformat()
|
|
DONE_TASKS = 0
|
|
RETRY_TASKS = 0
|
|
PENDING_TASKS = 0
|
|
HEAD_CREATED_AT = ""
|
|
HEAD_DETAIL = ""
|
|
|
|
def set_progress(task_id, from_page=0, to_page=-1, prog=None, msg="Processing..."):
|
|
global PAYLOAD
|
|
if prog is not None and prog < 0:
|
|
msg = "[ERROR]" + msg
|
|
cancel = TaskService.do_cancel(task_id)
|
|
if cancel:
|
|
msg += " [Canceled]"
|
|
prog = -1
|
|
|
|
if to_page > 0:
|
|
if msg:
|
|
msg = f"Page({from_page + 1}~{to_page + 1}): " + msg
|
|
d = {"progress_msg": msg}
|
|
if prog is not None:
|
|
d["progress"] = prog
|
|
try:
|
|
TaskService.update_progress(task_id, d)
|
|
except Exception:
|
|
logging.exception(f"set_progress({task_id}) got exception")
|
|
|
|
close_connection()
|
|
if cancel:
|
|
if PAYLOAD:
|
|
PAYLOAD.ack()
|
|
PAYLOAD = None
|
|
os._exit(0)
|
|
|
|
|
|
def collect():
|
|
global CONSUMER_NAME, PAYLOAD
|
|
try:
|
|
PAYLOAD = REDIS_CONN.get_unacked_for(CONSUMER_NAME, SVR_QUEUE_NAME, "rag_flow_svr_task_broker")
|
|
if not PAYLOAD:
|
|
PAYLOAD = REDIS_CONN.queue_consumer(SVR_QUEUE_NAME, "rag_flow_svr_task_broker", CONSUMER_NAME)
|
|
if not PAYLOAD:
|
|
time.sleep(1)
|
|
return pd.DataFrame()
|
|
except Exception:
|
|
logging.exception("Get task event from queue exception")
|
|
return pd.DataFrame()
|
|
|
|
msg = PAYLOAD.get_message()
|
|
if not msg:
|
|
return pd.DataFrame()
|
|
|
|
if TaskService.do_cancel(msg["id"]):
|
|
logging.info("Task {} has been canceled.".format(msg["id"]))
|
|
return pd.DataFrame()
|
|
tasks = TaskService.get_tasks(msg["id"])
|
|
if not tasks:
|
|
logging.warning("{} empty task!".format(msg["id"]))
|
|
return []
|
|
|
|
tasks = pd.DataFrame(tasks)
|
|
if msg.get("type", "") == "raptor":
|
|
tasks["task_type"] = "raptor"
|
|
return tasks
|
|
|
|
|
|
def get_storage_binary(bucket, name):
|
|
return STORAGE_IMPL.get(bucket, name)
|
|
|
|
|
|
def build(row):
|
|
if row["size"] > DOC_MAXIMUM_SIZE:
|
|
set_progress(row["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
|
|
(int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
|
|
return []
|
|
|
|
callback = partial(
|
|
set_progress,
|
|
row["id"],
|
|
row["from_page"],
|
|
row["to_page"])
|
|
chunker = FACTORY[row["parser_id"].lower()]
|
|
try:
|
|
st = timer()
|
|
bucket, name = File2DocumentService.get_storage_address(doc_id=row["doc_id"])
|
|
binary = get_storage_binary(bucket, name)
|
|
logging.info(
|
|
"From minio({}) {}/{}".format(timer() - st, row["location"], row["name"]))
|
|
except TimeoutError:
|
|
callback(-1, "Internal server error: Fetch file from minio timeout. Could you try it again.")
|
|
logging.exception("Minio {}/{} got timeout: Fetch file from minio timeout.".format(row["location"], row["name"]))
|
|
return
|
|
except Exception as e:
|
|
if re.search("(No such file|not found)", str(e)):
|
|
callback(-1, "Can not find file <%s> from minio. Could you try it again?" % row["name"])
|
|
else:
|
|
callback(-1, "Get file from minio: %s" % str(e).replace("'", ""))
|
|
logging.exception("Chunking {}/{} got exception".format(row["location"], row["name"]))
|
|
return
|
|
|
|
try:
|
|
cks = chunker.chunk(row["name"], binary=binary, from_page=row["from_page"],
|
|
to_page=row["to_page"], lang=row["language"], callback=callback,
|
|
kb_id=row["kb_id"], parser_config=row["parser_config"], tenant_id=row["tenant_id"])
|
|
logging.info("Chunking({}) {}/{} done".format(timer() - st, row["location"], row["name"]))
|
|
except Exception as e:
|
|
callback(-1, "Internal server error while chunking: %s" %
|
|
str(e).replace("'", ""))
|
|
logging.exception("Chunking {}/{} got exception".format(row["location"], row["name"]))
|
|
return
|
|
|
|
docs = []
|
|
doc = {
|
|
"doc_id": row["doc_id"],
|
|
"kb_id": str(row["kb_id"])
|
|
}
|
|
el = 0
|
|
for ck in cks:
|
|
d = copy.deepcopy(doc)
|
|
d.update(ck)
|
|
md5 = hashlib.md5()
|
|
md5.update((ck["content_with_weight"] +
|
|
str(d["doc_id"])).encode("utf-8"))
|
|
d["id"] = md5.hexdigest()
|
|
d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
|
|
d["create_timestamp_flt"] = datetime.now().timestamp()
|
|
if not d.get("image"):
|
|
d["img_id"] = ""
|
|
d["page_num_list"] = json.dumps([])
|
|
d["position_list"] = json.dumps([])
|
|
d["top_list"] = json.dumps([])
|
|
docs.append(d)
|
|
continue
|
|
|
|
try:
|
|
output_buffer = BytesIO()
|
|
if isinstance(d["image"], bytes):
|
|
output_buffer = BytesIO(d["image"])
|
|
else:
|
|
d["image"].save(output_buffer, format='JPEG')
|
|
|
|
st = timer()
|
|
STORAGE_IMPL.put(row["kb_id"], d["id"], output_buffer.getvalue())
|
|
el += timer() - st
|
|
except Exception:
|
|
logging.exception("Saving image of chunk {}/{}/{} got exception".format(row["location"], row["name"], d["_id"]))
|
|
|
|
d["img_id"] = "{}-{}".format(row["kb_id"], d["id"])
|
|
del d["image"]
|
|
docs.append(d)
|
|
logging.info("MINIO PUT({}):{}".format(row["name"], el))
|
|
|
|
if row["parser_config"].get("auto_keywords", 0):
|
|
st = timer()
|
|
callback(msg="Start to generate keywords for every chunk ...")
|
|
chat_mdl = LLMBundle(row["tenant_id"], LLMType.CHAT, llm_name=row["llm_id"], lang=row["language"])
|
|
for d in docs:
|
|
d["important_kwd"] = keyword_extraction(chat_mdl, d["content_with_weight"],
|
|
row["parser_config"]["auto_keywords"]).split(",")
|
|
d["important_tks"] = rag_tokenizer.tokenize(" ".join(d["important_kwd"]))
|
|
callback(msg="Keywords generation completed in {:.2f}s".format(timer()-st))
|
|
|
|
if row["parser_config"].get("auto_questions", 0):
|
|
st = timer()
|
|
callback(msg="Start to generate questions for every chunk ...")
|
|
chat_mdl = LLMBundle(row["tenant_id"], LLMType.CHAT, llm_name=row["llm_id"], lang=row["language"])
|
|
for d in docs:
|
|
qst = question_proposal(chat_mdl, d["content_with_weight"], row["parser_config"]["auto_questions"])
|
|
d["content_with_weight"] = f"Question: \n{qst}\n\nAnswer:\n" + d["content_with_weight"]
|
|
qst = rag_tokenizer.tokenize(qst)
|
|
if "content_ltks" in d:
|
|
d["content_ltks"] += " " + qst
|
|
if "content_sm_ltks" in d:
|
|
d["content_sm_ltks"] += " " + rag_tokenizer.fine_grained_tokenize(qst)
|
|
callback(msg="Question generation completed in {:.2f}s".format(timer()-st))
|
|
|
|
return docs
|
|
|
|
|
|
def init_kb(row, vector_size: int):
|
|
idxnm = search.index_name(row["tenant_id"])
|
|
return docStoreConn.createIdx(idxnm, row["kb_id"], vector_size)
|
|
|
|
|
|
def embedding(docs, mdl, parser_config=None, callback=None):
|
|
if parser_config is None:
|
|
parser_config = {}
|
|
batch_size = 32
|
|
tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [
|
|
re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", d["content_with_weight"]) for d in docs]
|
|
tk_count = 0
|
|
if len(tts) == len(cnts):
|
|
tts_ = np.array([])
|
|
for i in range(0, len(tts), batch_size):
|
|
vts, c = mdl.encode(tts[i: i + batch_size])
|
|
if len(tts_) == 0:
|
|
tts_ = vts
|
|
else:
|
|
tts_ = np.concatenate((tts_, vts), axis=0)
|
|
tk_count += c
|
|
callback(prog=0.6 + 0.1 * (i + 1) / len(tts), msg="")
|
|
tts = tts_
|
|
|
|
cnts_ = np.array([])
|
|
for i in range(0, len(cnts), batch_size):
|
|
vts, c = mdl.encode(cnts[i: i + batch_size])
|
|
if len(cnts_) == 0:
|
|
cnts_ = vts
|
|
else:
|
|
cnts_ = np.concatenate((cnts_, vts), axis=0)
|
|
tk_count += c
|
|
callback(prog=0.7 + 0.2 * (i + 1) / len(cnts), msg="")
|
|
cnts = cnts_
|
|
|
|
title_w = float(parser_config.get("filename_embd_weight", 0.1))
|
|
vects = (title_w * tts + (1 - title_w) *
|
|
cnts) if len(tts) == len(cnts) else cnts
|
|
|
|
assert len(vects) == len(docs)
|
|
vector_size = 0
|
|
for i, d in enumerate(docs):
|
|
v = vects[i].tolist()
|
|
vector_size = len(v)
|
|
d["q_%d_vec" % len(v)] = v
|
|
return tk_count, vector_size
|
|
|
|
|
|
def run_raptor(row, chat_mdl, embd_mdl, callback=None):
|
|
vts, _ = embd_mdl.encode(["ok"])
|
|
vector_size = len(vts[0])
|
|
vctr_nm = "q_%d_vec" % vector_size
|
|
chunks = []
|
|
for d in retrievaler.chunk_list(row["doc_id"], row["tenant_id"], [str(row["kb_id"])], fields=["content_with_weight", vctr_nm]):
|
|
chunks.append((d["content_with_weight"], np.array(d[vctr_nm])))
|
|
|
|
raptor = Raptor(
|
|
row["parser_config"]["raptor"].get("max_cluster", 64),
|
|
chat_mdl,
|
|
embd_mdl,
|
|
row["parser_config"]["raptor"]["prompt"],
|
|
row["parser_config"]["raptor"]["max_token"],
|
|
row["parser_config"]["raptor"]["threshold"]
|
|
)
|
|
original_length = len(chunks)
|
|
raptor(chunks, row["parser_config"]["raptor"]["random_seed"], callback)
|
|
doc = {
|
|
"doc_id": row["doc_id"],
|
|
"kb_id": [str(row["kb_id"])],
|
|
"docnm_kwd": row["name"],
|
|
"title_tks": rag_tokenizer.tokenize(row["name"])
|
|
}
|
|
res = []
|
|
tk_count = 0
|
|
for content, vctr in chunks[original_length:]:
|
|
d = copy.deepcopy(doc)
|
|
md5 = hashlib.md5()
|
|
md5.update((content + str(d["doc_id"])).encode("utf-8"))
|
|
d["id"] = md5.hexdigest()
|
|
d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
|
|
d["create_timestamp_flt"] = datetime.now().timestamp()
|
|
d[vctr_nm] = vctr.tolist()
|
|
d["content_with_weight"] = content
|
|
d["content_ltks"] = rag_tokenizer.tokenize(content)
|
|
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
|
|
res.append(d)
|
|
tk_count += num_tokens_from_string(content)
|
|
return res, tk_count, vector_size
|
|
|
|
|
|
def main():
|
|
rows = collect()
|
|
if len(rows) == 0:
|
|
return
|
|
|
|
for _, r in rows.iterrows():
|
|
callback = partial(set_progress, r["id"], r["from_page"], r["to_page"])
|
|
try:
|
|
embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING, llm_name=r["embd_id"], lang=r["language"])
|
|
except Exception as e:
|
|
callback(-1, msg=str(e))
|
|
logging.exception("LLMBundle got exception")
|
|
continue
|
|
|
|
if r.get("task_type", "") == "raptor":
|
|
try:
|
|
chat_mdl = LLMBundle(r["tenant_id"], LLMType.CHAT, llm_name=r["llm_id"], lang=r["language"])
|
|
cks, tk_count, vector_size = run_raptor(r, chat_mdl, embd_mdl, callback)
|
|
except Exception as e:
|
|
callback(-1, msg=str(e))
|
|
logging.exception("run_raptor got exception")
|
|
continue
|
|
else:
|
|
st = timer()
|
|
cks = build(r)
|
|
logging.info("Build chunks({}): {}".format(r["name"], timer() - st))
|
|
if cks is None:
|
|
continue
|
|
if not cks:
|
|
callback(1., "No chunk! Done!")
|
|
continue
|
|
# TODO: exception handler
|
|
## set_progress(r["did"], -1, "ERROR: ")
|
|
callback(
|
|
msg="Finished slicing files ({} chunks in {:.2f}s). Start to embedding the content.".format(len(cks), timer() - st)
|
|
)
|
|
st = timer()
|
|
try:
|
|
tk_count, vector_size = embedding(cks, embd_mdl, r["parser_config"], callback)
|
|
except Exception as e:
|
|
callback(-1, "Embedding error:{}".format(str(e)))
|
|
logging.exception("run_rembedding got exception")
|
|
tk_count = 0
|
|
logging.info("Embedding elapsed({}): {:.2f}".format(r["name"], timer() - st))
|
|
callback(msg="Finished embedding (in {:.2f}s)! Start to build index!".format(timer() - st))
|
|
|
|
# logging.info(f"task_executor init_kb index {search.index_name(r["tenant_id"])} embd_mdl {embd_mdl.llm_name} vector length {vector_size}")
|
|
init_kb(r, vector_size)
|
|
chunk_count = len(set([c["id"] for c in cks]))
|
|
st = timer()
|
|
es_r = ""
|
|
es_bulk_size = 4
|
|
for b in range(0, len(cks), es_bulk_size):
|
|
es_r = docStoreConn.insert(cks[b:b + es_bulk_size], search.index_name(r["tenant_id"]), r["kb_id"])
|
|
if b % 128 == 0:
|
|
callback(prog=0.8 + 0.1 * (b + 1) / len(cks), msg="")
|
|
|
|
logging.info("Indexing elapsed({}): {:.2f}".format(r["name"], timer() - st))
|
|
if es_r:
|
|
callback(-1, "Insert chunk error, detail info please check log file. Please also check ES status!")
|
|
docStoreConn.delete({"doc_id": r["doc_id"]}, search.index_name(r["tenant_id"]), r["kb_id"])
|
|
logging.error('Insert chunk error: ' + str(es_r))
|
|
else:
|
|
if TaskService.do_cancel(r["id"]):
|
|
docStoreConn.delete({"doc_id": r["doc_id"]}, search.index_name(r["tenant_id"]), r["kb_id"])
|
|
continue
|
|
callback(msg="Indexing elapsed in {:.2f}s.".format(timer() - st))
|
|
callback(1., "Done!")
|
|
DocumentService.increment_chunk_num(
|
|
r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
|
|
logging.info(
|
|
"Chunk doc({}), token({}), chunks({}), elapsed:{:.2f}".format(
|
|
r["id"], tk_count, len(cks), timer() - st))
|
|
|
|
|
|
def report_status():
|
|
global CONSUMER_NAME, BOOT_AT, DONE_TASKS, RETRY_TASKS, PENDING_TASKS, HEAD_CREATED_AT, HEAD_DETAIL
|
|
REDIS_CONN.sadd("TASKEXE", CONSUMER_NAME)
|
|
while True:
|
|
try:
|
|
now = datetime.now()
|
|
PENDING_TASKS = REDIS_CONN.queue_length(SVR_QUEUE_NAME)
|
|
if PENDING_TASKS > 0:
|
|
head_info = REDIS_CONN.queue_head(SVR_QUEUE_NAME)
|
|
if head_info is not None:
|
|
seconds = int(head_info[0].split("-")[0])/1000
|
|
HEAD_CREATED_AT = datetime.fromtimestamp(seconds).isoformat()
|
|
HEAD_DETAIL = head_info[1]
|
|
|
|
heartbeat = json.dumps({
|
|
"name": CONSUMER_NAME,
|
|
"now": now.isoformat(),
|
|
"boot_at": BOOT_AT,
|
|
"done": DONE_TASKS,
|
|
"retry": RETRY_TASKS,
|
|
"pending": PENDING_TASKS,
|
|
"head_created_at": HEAD_CREATED_AT,
|
|
"head_detail": HEAD_DETAIL,
|
|
})
|
|
REDIS_CONN.zadd(CONSUMER_NAME, heartbeat, now.timestamp())
|
|
logging.info(f"{CONSUMER_NAME} reported heartbeat: {heartbeat}")
|
|
|
|
expired = REDIS_CONN.zcount(CONSUMER_NAME, 0, now.timestamp() - 60*30)
|
|
if expired > 0:
|
|
REDIS_CONN.zpopmin(CONSUMER_NAME, expired)
|
|
except Exception:
|
|
logging.exception("report_status got exception")
|
|
time.sleep(30)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
background_thread = threading.Thread(target=report_status)
|
|
background_thread.daemon = True
|
|
background_thread.start()
|
|
|
|
while True:
|
|
main()
|
|
if PAYLOAD:
|
|
PAYLOAD.ack()
|
|
PAYLOAD = None
|