mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-22 06:00:00 +08:00

### What problem does this PR solve? add support for NVIDIA llm ### Type of change - [x] New Feature (non-breaking change which adds functionality) --------- Co-authored-by: Zhedong Cen <cenzhedong2@126.com>
980 lines
38 KiB
Python
980 lines
38 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
from openai.lib.azure import AzureOpenAI
|
|
from zhipuai import ZhipuAI
|
|
from dashscope import Generation
|
|
from abc import ABC
|
|
from openai import OpenAI
|
|
import openai
|
|
from ollama import Client
|
|
from volcengine.maas.v2 import MaasService
|
|
from rag.nlp import is_english
|
|
from rag.utils import num_tokens_from_string
|
|
from groq import Groq
|
|
import json
|
|
import requests
|
|
|
|
class Base(ABC):
|
|
def __init__(self, key, model_name, base_url):
|
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
|
self.model_name = model_name
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
try:
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
**gen_conf)
|
|
ans = response.choices[0].message.content.strip()
|
|
if response.choices[0].finish_reason == "length":
|
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
|
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
return ans, response.usage.total_tokens
|
|
except openai.APIError as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
ans = ""
|
|
total_tokens = 0
|
|
try:
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
stream=True,
|
|
**gen_conf)
|
|
for resp in response:
|
|
if not resp.choices or not resp.choices[0].delta.content:continue
|
|
ans += resp.choices[0].delta.content
|
|
total_tokens += 1
|
|
if resp.choices[0].finish_reason == "length":
|
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
|
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
yield ans
|
|
|
|
except openai.APIError as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield total_tokens
|
|
|
|
|
|
class GptTurbo(Base):
|
|
def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"):
|
|
if not base_url: base_url="https://api.openai.com/v1"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class MoonshotChat(Base):
|
|
def __init__(self, key, model_name="moonshot-v1-8k", base_url="https://api.moonshot.cn/v1"):
|
|
if not base_url: base_url="https://api.moonshot.cn/v1"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class XinferenceChat(Base):
|
|
def __init__(self, key=None, model_name="", base_url=""):
|
|
key = "xxx"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class DeepSeekChat(Base):
|
|
def __init__(self, key, model_name="deepseek-chat", base_url="https://api.deepseek.com/v1"):
|
|
if not base_url: base_url="https://api.deepseek.com/v1"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class AzureChat(Base):
|
|
def __init__(self, key, model_name, **kwargs):
|
|
self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01")
|
|
self.model_name = model_name
|
|
|
|
|
|
class BaiChuanChat(Base):
|
|
def __init__(self, key, model_name="Baichuan3-Turbo", base_url="https://api.baichuan-ai.com/v1"):
|
|
if not base_url:
|
|
base_url = "https://api.baichuan-ai.com/v1"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
@staticmethod
|
|
def _format_params(params):
|
|
return {
|
|
"temperature": params.get("temperature", 0.3),
|
|
"max_tokens": params.get("max_tokens", 2048),
|
|
"top_p": params.get("top_p", 0.85),
|
|
}
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
try:
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
extra_body={
|
|
"tools": [{
|
|
"type": "web_search",
|
|
"web_search": {
|
|
"enable": True,
|
|
"search_mode": "performance_first"
|
|
}
|
|
}]
|
|
},
|
|
**self._format_params(gen_conf))
|
|
ans = response.choices[0].message.content.strip()
|
|
if response.choices[0].finish_reason == "length":
|
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
|
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
return ans, response.usage.total_tokens
|
|
except openai.APIError as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
ans = ""
|
|
total_tokens = 0
|
|
try:
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
extra_body={
|
|
"tools": [{
|
|
"type": "web_search",
|
|
"web_search": {
|
|
"enable": True,
|
|
"search_mode": "performance_first"
|
|
}
|
|
}]
|
|
},
|
|
stream=True,
|
|
**self._format_params(gen_conf))
|
|
for resp in response:
|
|
if resp.choices[0].finish_reason == "stop":
|
|
if not resp.choices[0].delta.content:
|
|
continue
|
|
total_tokens = resp.usage.get('total_tokens', 0)
|
|
if not resp.choices[0].delta.content:
|
|
continue
|
|
ans += resp.choices[0].delta.content
|
|
if resp.choices[0].finish_reason == "length":
|
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
|
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
yield ans
|
|
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield total_tokens
|
|
|
|
|
|
class QWenChat(Base):
|
|
def __init__(self, key, model_name=Generation.Models.qwen_turbo, **kwargs):
|
|
import dashscope
|
|
dashscope.api_key = key
|
|
self.model_name = model_name
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
from http import HTTPStatus
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
response = Generation.call(
|
|
self.model_name,
|
|
messages=history,
|
|
result_format='message',
|
|
**gen_conf
|
|
)
|
|
ans = ""
|
|
tk_count = 0
|
|
if response.status_code == HTTPStatus.OK:
|
|
ans += response.output.choices[0]['message']['content']
|
|
tk_count += response.usage.total_tokens
|
|
if response.output.choices[0].get("finish_reason", "") == "length":
|
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
|
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
return ans, tk_count
|
|
|
|
return "**ERROR**: " + response.message, tk_count
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
from http import HTTPStatus
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
ans = ""
|
|
tk_count = 0
|
|
try:
|
|
response = Generation.call(
|
|
self.model_name,
|
|
messages=history,
|
|
result_format='message',
|
|
stream=True,
|
|
**gen_conf
|
|
)
|
|
for resp in response:
|
|
if resp.status_code == HTTPStatus.OK:
|
|
ans = resp.output.choices[0]['message']['content']
|
|
tk_count = resp.usage.total_tokens
|
|
if resp.output.choices[0].get("finish_reason", "") == "length":
|
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
|
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
yield ans
|
|
else:
|
|
yield ans + "\n**ERROR**: " + resp.message if str(resp.message).find("Access")<0 else "Out of credit. Please set the API key in **settings > Model providers.**"
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield tk_count
|
|
|
|
|
|
class ZhipuChat(Base):
|
|
def __init__(self, key, model_name="glm-3-turbo", **kwargs):
|
|
self.client = ZhipuAI(api_key=key)
|
|
self.model_name = model_name
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
try:
|
|
if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"]
|
|
if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"]
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
**gen_conf
|
|
)
|
|
ans = response.choices[0].message.content.strip()
|
|
if response.choices[0].finish_reason == "length":
|
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
|
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
return ans, response.usage.total_tokens
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"]
|
|
if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"]
|
|
ans = ""
|
|
tk_count = 0
|
|
try:
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
stream=True,
|
|
**gen_conf
|
|
)
|
|
for resp in response:
|
|
if not resp.choices[0].delta.content:continue
|
|
delta = resp.choices[0].delta.content
|
|
ans += delta
|
|
if resp.choices[0].finish_reason == "length":
|
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
|
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
tk_count = resp.usage.total_tokens
|
|
if resp.choices[0].finish_reason == "stop": tk_count = resp.usage.total_tokens
|
|
yield ans
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield tk_count
|
|
|
|
|
|
class OllamaChat(Base):
|
|
def __init__(self, key, model_name, **kwargs):
|
|
self.client = Client(host=kwargs["base_url"])
|
|
self.model_name = model_name
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
try:
|
|
options = {}
|
|
if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"]
|
|
if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"]
|
|
if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"]
|
|
if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"]
|
|
if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"]
|
|
response = self.client.chat(
|
|
model=self.model_name,
|
|
messages=history,
|
|
options=options,
|
|
keep_alive=-1
|
|
)
|
|
ans = response["message"]["content"].strip()
|
|
return ans, response["eval_count"] + response.get("prompt_eval_count", 0)
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
options = {}
|
|
if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"]
|
|
if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"]
|
|
if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"]
|
|
if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"]
|
|
if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"]
|
|
ans = ""
|
|
try:
|
|
response = self.client.chat(
|
|
model=self.model_name,
|
|
messages=history,
|
|
stream=True,
|
|
options=options,
|
|
keep_alive=-1
|
|
)
|
|
for resp in response:
|
|
if resp["done"]:
|
|
yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
|
|
ans += resp["message"]["content"]
|
|
yield ans
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
yield 0
|
|
|
|
|
|
class LocalAIChat(Base):
|
|
def __init__(self, key, model_name, base_url):
|
|
if base_url[-1] == "/":
|
|
base_url = base_url[:-1]
|
|
self.base_url = base_url + "/v1/chat/completions"
|
|
self.model_name = model_name.split("___")[0]
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
for k in list(gen_conf.keys()):
|
|
if k not in ["temperature", "top_p", "max_tokens"]:
|
|
del gen_conf[k]
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
}
|
|
payload = json.dumps(
|
|
{"model": self.model_name, "messages": history, **gen_conf}
|
|
)
|
|
try:
|
|
response = requests.request(
|
|
"POST", url=self.base_url, headers=headers, data=payload
|
|
)
|
|
response = response.json()
|
|
ans = response["choices"][0]["message"]["content"].strip()
|
|
if response["choices"][0]["finish_reason"] == "length":
|
|
ans += (
|
|
"...\nFor the content length reason, it stopped, continue?"
|
|
if is_english([ans])
|
|
else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
)
|
|
return ans, response["usage"]["total_tokens"]
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
ans = ""
|
|
total_tokens = 0
|
|
try:
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
}
|
|
payload = json.dumps(
|
|
{
|
|
"model": self.model_name,
|
|
"messages": history,
|
|
"stream": True,
|
|
**gen_conf,
|
|
}
|
|
)
|
|
response = requests.request(
|
|
"POST",
|
|
url=self.base_url,
|
|
headers=headers,
|
|
data=payload,
|
|
)
|
|
for resp in response.content.decode("utf-8").split("\n\n"):
|
|
if "choices" not in resp:
|
|
continue
|
|
resp = json.loads(resp[6:])
|
|
if "delta" in resp["choices"][0]:
|
|
text = resp["choices"][0]["delta"]["content"]
|
|
else:
|
|
continue
|
|
ans += text
|
|
total_tokens += 1
|
|
yield ans
|
|
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield total_tokens
|
|
|
|
|
|
class LocalLLM(Base):
|
|
class RPCProxy:
|
|
def __init__(self, host, port):
|
|
self.host = host
|
|
self.port = int(port)
|
|
self.__conn()
|
|
|
|
def __conn(self):
|
|
from multiprocessing.connection import Client
|
|
self._connection = Client(
|
|
(self.host, self.port), authkey=b'infiniflow-token4kevinhu')
|
|
|
|
def __getattr__(self, name):
|
|
import pickle
|
|
|
|
def do_rpc(*args, **kwargs):
|
|
for _ in range(3):
|
|
try:
|
|
self._connection.send(
|
|
pickle.dumps((name, args, kwargs)))
|
|
return pickle.loads(self._connection.recv())
|
|
except Exception as e:
|
|
self.__conn()
|
|
raise Exception("RPC connection lost!")
|
|
|
|
return do_rpc
|
|
|
|
def __init__(self, key, model_name="glm-3-turbo"):
|
|
self.client = LocalLLM.RPCProxy("127.0.0.1", 7860)
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
try:
|
|
ans = self.client.chat(
|
|
history,
|
|
gen_conf
|
|
)
|
|
return ans, num_tokens_from_string(ans)
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
token_count = 0
|
|
answer = ""
|
|
try:
|
|
for ans in self.client.chat_streamly(history, gen_conf):
|
|
answer += ans
|
|
token_count += 1
|
|
yield answer
|
|
except Exception as e:
|
|
yield answer + "\n**ERROR**: " + str(e)
|
|
|
|
yield token_count
|
|
|
|
|
|
class VolcEngineChat(Base):
|
|
def __init__(self, key, model_name, base_url):
|
|
"""
|
|
Since do not want to modify the original database fields, and the VolcEngine authentication method is quite special,
|
|
Assemble ak, sk, ep_id into api_key, store it as a dictionary type, and parse it for use
|
|
model_name is for display only
|
|
"""
|
|
self.client = MaasService('maas-api.ml-platform-cn-beijing.volces.com', 'cn-beijing')
|
|
self.volc_ak = eval(key).get('volc_ak', '')
|
|
self.volc_sk = eval(key).get('volc_sk', '')
|
|
self.client.set_ak(self.volc_ak)
|
|
self.client.set_sk(self.volc_sk)
|
|
self.model_name = eval(key).get('ep_id', '')
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
try:
|
|
req = {
|
|
"parameters": {
|
|
"min_new_tokens": gen_conf.get("min_new_tokens", 1),
|
|
"top_k": gen_conf.get("top_k", 0),
|
|
"max_prompt_tokens": gen_conf.get("max_prompt_tokens", 30000),
|
|
"temperature": gen_conf.get("temperature", 0.1),
|
|
"max_new_tokens": gen_conf.get("max_tokens", 1000),
|
|
"top_p": gen_conf.get("top_p", 0.3),
|
|
},
|
|
"messages": history
|
|
}
|
|
response = self.client.chat(self.model_name, req)
|
|
ans = response.choices[0].message.content.strip()
|
|
if response.choices[0].finish_reason == "length":
|
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
|
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
return ans, response.usage.total_tokens
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
ans = ""
|
|
tk_count = 0
|
|
try:
|
|
req = {
|
|
"parameters": {
|
|
"min_new_tokens": gen_conf.get("min_new_tokens", 1),
|
|
"top_k": gen_conf.get("top_k", 0),
|
|
"max_prompt_tokens": gen_conf.get("max_prompt_tokens", 30000),
|
|
"temperature": gen_conf.get("temperature", 0.1),
|
|
"max_new_tokens": gen_conf.get("max_tokens", 1000),
|
|
"top_p": gen_conf.get("top_p", 0.3),
|
|
},
|
|
"messages": history
|
|
}
|
|
stream = self.client.stream_chat(self.model_name, req)
|
|
for resp in stream:
|
|
if not resp.choices[0].message.content:
|
|
continue
|
|
ans += resp.choices[0].message.content
|
|
if resp.choices[0].finish_reason == "stop":
|
|
tk_count = resp.usage.total_tokens
|
|
yield ans
|
|
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
yield tk_count
|
|
|
|
|
|
class MiniMaxChat(Base):
|
|
def __init__(
|
|
self,
|
|
key,
|
|
model_name,
|
|
base_url="https://api.minimax.chat/v1/text/chatcompletion_v2",
|
|
):
|
|
if not base_url:
|
|
base_url = "https://api.minimax.chat/v1/text/chatcompletion_v2"
|
|
self.base_url = base_url
|
|
self.model_name = model_name
|
|
self.api_key = key
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
for k in list(gen_conf.keys()):
|
|
if k not in ["temperature", "top_p", "max_tokens"]:
|
|
del gen_conf[k]
|
|
headers = {
|
|
"Authorization": f"Bearer {self.api_key}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
payload = json.dumps(
|
|
{"model": self.model_name, "messages": history, **gen_conf}
|
|
)
|
|
try:
|
|
response = requests.request(
|
|
"POST", url=self.base_url, headers=headers, data=payload
|
|
)
|
|
response = response.json()
|
|
ans = response["choices"][0]["message"]["content"].strip()
|
|
if response["choices"][0]["finish_reason"] == "length":
|
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
|
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
return ans, response["usage"]["total_tokens"]
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
ans = ""
|
|
total_tokens = 0
|
|
try:
|
|
headers = {
|
|
"Authorization": f"Bearer {self.api_key}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
payload = json.dumps(
|
|
{
|
|
"model": self.model_name,
|
|
"messages": history,
|
|
"stream": True,
|
|
**gen_conf,
|
|
}
|
|
)
|
|
response = requests.request(
|
|
"POST",
|
|
url=self.base_url,
|
|
headers=headers,
|
|
data=payload,
|
|
)
|
|
for resp in response.text.split("\n\n")[:-1]:
|
|
resp = json.loads(resp[6:])
|
|
if "delta" in resp["choices"][0]:
|
|
text = resp["choices"][0]["delta"]["content"]
|
|
else:
|
|
continue
|
|
ans += text
|
|
total_tokens += num_tokens_from_string(text)
|
|
yield ans
|
|
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield total_tokens
|
|
|
|
|
|
class MistralChat(Base):
|
|
|
|
def __init__(self, key, model_name, base_url=None):
|
|
from mistralai.client import MistralClient
|
|
self.client = MistralClient(api_key=key)
|
|
self.model_name = model_name
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
for k in list(gen_conf.keys()):
|
|
if k not in ["temperature", "top_p", "max_tokens"]:
|
|
del gen_conf[k]
|
|
try:
|
|
response = self.client.chat(
|
|
model=self.model_name,
|
|
messages=history,
|
|
**gen_conf)
|
|
ans = response.choices[0].message.content
|
|
if response.choices[0].finish_reason == "length":
|
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
|
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
return ans, response.usage.total_tokens
|
|
except openai.APIError as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
for k in list(gen_conf.keys()):
|
|
if k not in ["temperature", "top_p", "max_tokens"]:
|
|
del gen_conf[k]
|
|
ans = ""
|
|
total_tokens = 0
|
|
try:
|
|
response = self.client.chat_stream(
|
|
model=self.model_name,
|
|
messages=history,
|
|
**gen_conf)
|
|
for resp in response:
|
|
if not resp.choices or not resp.choices[0].delta.content:continue
|
|
ans += resp.choices[0].delta.content
|
|
total_tokens += 1
|
|
if resp.choices[0].finish_reason == "length":
|
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
|
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
yield ans
|
|
|
|
except openai.APIError as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield total_tokens
|
|
|
|
|
|
class BedrockChat(Base):
|
|
|
|
def __init__(self, key, model_name, **kwargs):
|
|
import boto3
|
|
self.bedrock_ak = eval(key).get('bedrock_ak', '')
|
|
self.bedrock_sk = eval(key).get('bedrock_sk', '')
|
|
self.bedrock_region = eval(key).get('bedrock_region', '')
|
|
self.model_name = model_name
|
|
self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
|
|
aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
from botocore.exceptions import ClientError
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
for k in list(gen_conf.keys()):
|
|
if k not in ["temperature", "top_p", "max_tokens"]:
|
|
del gen_conf[k]
|
|
if "max_tokens" in gen_conf:
|
|
gen_conf["maxTokens"] = gen_conf["max_tokens"]
|
|
_ = gen_conf.pop("max_tokens")
|
|
if "top_p" in gen_conf:
|
|
gen_conf["topP"] = gen_conf["top_p"]
|
|
_ = gen_conf.pop("top_p")
|
|
|
|
try:
|
|
# Send the message to the model, using a basic inference configuration.
|
|
response = self.client.converse(
|
|
modelId=self.model_name,
|
|
messages=history,
|
|
inferenceConfig=gen_conf
|
|
)
|
|
|
|
# Extract and print the response text.
|
|
ans = response["output"]["message"]["content"][0]["text"]
|
|
return ans, num_tokens_from_string(ans)
|
|
|
|
except (ClientError, Exception) as e:
|
|
return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
from botocore.exceptions import ClientError
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
for k in list(gen_conf.keys()):
|
|
if k not in ["temperature", "top_p", "max_tokens"]:
|
|
del gen_conf[k]
|
|
if "max_tokens" in gen_conf:
|
|
gen_conf["maxTokens"] = gen_conf["max_tokens"]
|
|
_ = gen_conf.pop("max_tokens")
|
|
if "top_p" in gen_conf:
|
|
gen_conf["topP"] = gen_conf["top_p"]
|
|
_ = gen_conf.pop("top_p")
|
|
|
|
if self.model_name.split('.')[0] == 'ai21':
|
|
try:
|
|
response = self.client.converse(
|
|
modelId=self.model_name,
|
|
messages=history,
|
|
inferenceConfig=gen_conf
|
|
)
|
|
ans = response["output"]["message"]["content"][0]["text"]
|
|
return ans, num_tokens_from_string(ans)
|
|
|
|
except (ClientError, Exception) as e:
|
|
return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0
|
|
|
|
ans = ""
|
|
try:
|
|
# Send the message to the model, using a basic inference configuration.
|
|
streaming_response = self.client.converse_stream(
|
|
modelId=self.model_name,
|
|
messages=history,
|
|
inferenceConfig=gen_conf
|
|
)
|
|
|
|
# Extract and print the streamed response text in real-time.
|
|
for resp in streaming_response["stream"]:
|
|
if "contentBlockDelta" in resp:
|
|
ans += resp["contentBlockDelta"]["delta"]["text"]
|
|
yield ans
|
|
|
|
except (ClientError, Exception) as e:
|
|
yield ans + f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}"
|
|
|
|
yield num_tokens_from_string(ans)
|
|
|
|
class GeminiChat(Base):
|
|
|
|
def __init__(self, key, model_name,base_url=None):
|
|
from google.generativeai import client,GenerativeModel
|
|
|
|
client.configure(api_key=key)
|
|
_client = client.get_default_generative_client()
|
|
self.model_name = 'models/' + model_name
|
|
self.model = GenerativeModel(model_name=self.model_name)
|
|
self.model._client = _client
|
|
|
|
def chat(self,system,history,gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "user", "parts": system})
|
|
if 'max_tokens' in gen_conf:
|
|
gen_conf['max_output_tokens'] = gen_conf['max_tokens']
|
|
for k in list(gen_conf.keys()):
|
|
if k not in ["temperature", "top_p", "max_output_tokens"]:
|
|
del gen_conf[k]
|
|
for item in history:
|
|
if 'role' in item and item['role'] == 'assistant':
|
|
item['role'] = 'model'
|
|
if 'content' in item :
|
|
item['parts'] = item.pop('content')
|
|
|
|
try:
|
|
response = self.model.generate_content(
|
|
history,
|
|
generation_config=gen_conf)
|
|
ans = response.text
|
|
return ans, response.usage_metadata.total_token_count
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "user", "parts": system})
|
|
if 'max_tokens' in gen_conf:
|
|
gen_conf['max_output_tokens'] = gen_conf['max_tokens']
|
|
for k in list(gen_conf.keys()):
|
|
if k not in ["temperature", "top_p", "max_output_tokens"]:
|
|
del gen_conf[k]
|
|
for item in history:
|
|
if 'role' in item and item['role'] == 'assistant':
|
|
item['role'] = 'model'
|
|
if 'content' in item :
|
|
item['parts'] = item.pop('content')
|
|
ans = ""
|
|
try:
|
|
response = self.model.generate_content(
|
|
history,
|
|
generation_config=gen_conf,stream=True)
|
|
for resp in response:
|
|
ans += resp.text
|
|
yield ans
|
|
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield response._chunks[-1].usage_metadata.total_token_count
|
|
|
|
|
|
class GroqChat:
|
|
def __init__(self, key, model_name,base_url=''):
|
|
self.client = Groq(api_key=key)
|
|
self.model_name = model_name
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
for k in list(gen_conf.keys()):
|
|
if k not in ["temperature", "top_p", "max_tokens"]:
|
|
del gen_conf[k]
|
|
ans = ""
|
|
try:
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
**gen_conf
|
|
)
|
|
ans = response.choices[0].message.content
|
|
if response.choices[0].finish_reason == "length":
|
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
|
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
return ans, response.usage.total_tokens
|
|
except Exception as e:
|
|
return ans + "\n**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
for k in list(gen_conf.keys()):
|
|
if k not in ["temperature", "top_p", "max_tokens"]:
|
|
del gen_conf[k]
|
|
ans = ""
|
|
total_tokens = 0
|
|
try:
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
stream=True,
|
|
**gen_conf
|
|
)
|
|
for resp in response:
|
|
if not resp.choices or not resp.choices[0].delta.content:
|
|
continue
|
|
ans += resp.choices[0].delta.content
|
|
total_tokens += 1
|
|
if resp.choices[0].finish_reason == "length":
|
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
|
|
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
yield ans
|
|
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield total_tokens
|
|
|
|
|
|
## openrouter
|
|
class OpenRouterChat(Base):
|
|
def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1"):
|
|
self.base_url = "https://openrouter.ai/api/v1"
|
|
self.client = OpenAI(base_url=self.base_url, api_key=key)
|
|
self.model_name = model_name
|
|
|
|
class StepFunChat(Base):
|
|
def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1/chat/completions"):
|
|
if not base_url:
|
|
base_url = "https://api.stepfun.com/v1/chat/completions"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class NvidiaChat(Base):
|
|
def __init__(
|
|
self,
|
|
key,
|
|
model_name,
|
|
base_url="https://integrate.api.nvidia.com/v1/chat/completions",
|
|
):
|
|
if not base_url:
|
|
base_url = "https://integrate.api.nvidia.com/v1/chat/completions"
|
|
self.base_url = base_url
|
|
self.model_name = model_name
|
|
self.api_key = key
|
|
self.headers = {
|
|
"accept": "application/json",
|
|
"Authorization": f"Bearer {self.api_key}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
for k in list(gen_conf.keys()):
|
|
if k not in ["temperature", "top_p", "max_tokens"]:
|
|
del gen_conf[k]
|
|
payload = {"model": self.model_name, "messages": history, **gen_conf}
|
|
try:
|
|
response = requests.post(
|
|
url=self.base_url, headers=self.headers, json=payload
|
|
)
|
|
response = response.json()
|
|
ans = response["choices"][0]["message"]["content"].strip()
|
|
return ans, response["usage"]["total_tokens"]
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
for k in list(gen_conf.keys()):
|
|
if k not in ["temperature", "top_p", "max_tokens"]:
|
|
del gen_conf[k]
|
|
ans = ""
|
|
total_tokens = 0
|
|
payload = {
|
|
"model": self.model_name,
|
|
"messages": history,
|
|
"stream": True,
|
|
**gen_conf,
|
|
}
|
|
|
|
try:
|
|
response = requests.post(
|
|
url=self.base_url,
|
|
headers=self.headers,
|
|
json=payload,
|
|
)
|
|
for resp in response.text.split("\n\n"):
|
|
if "choices" not in resp:
|
|
continue
|
|
resp = json.loads(resp[6:])
|
|
if "content" in resp["choices"][0]["delta"]:
|
|
text = resp["choices"][0]["delta"]["content"]
|
|
else:
|
|
continue
|
|
ans += text
|
|
if "usage" in resp:
|
|
total_tokens = resp["usage"]["total_tokens"]
|
|
yield ans
|
|
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield total_tokens
|