mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-22 06:00:00 +08:00

### What problem does this PR solve? add support for NVIDIA llm ### Type of change - [x] New Feature (non-breaking change which adds functionality) --------- Co-authored-by: Zhedong Cen <cenzhedong2@126.com>
205 lines
7.5 KiB
Python
205 lines
7.5 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import re
|
|
import threading
|
|
import requests
|
|
import torch
|
|
from FlagEmbedding import FlagReranker
|
|
from huggingface_hub import snapshot_download
|
|
import os
|
|
from abc import ABC
|
|
import numpy as np
|
|
from api.utils.file_utils import get_home_cache_dir
|
|
from rag.utils import num_tokens_from_string, truncate
|
|
|
|
def sigmoid(x):
|
|
return 1 / (1 + np.exp(-x))
|
|
|
|
class Base(ABC):
|
|
def __init__(self, key, model_name):
|
|
pass
|
|
|
|
def similarity(self, query: str, texts: list):
|
|
raise NotImplementedError("Please implement encode method!")
|
|
|
|
|
|
class DefaultRerank(Base):
|
|
_model = None
|
|
_model_lock = threading.Lock()
|
|
|
|
def __init__(self, key, model_name, **kwargs):
|
|
"""
|
|
If you have trouble downloading HuggingFace models, -_^ this might help!!
|
|
|
|
For Linux:
|
|
export HF_ENDPOINT=https://hf-mirror.com
|
|
|
|
For Windows:
|
|
Good luck
|
|
^_-
|
|
|
|
"""
|
|
if not DefaultRerank._model:
|
|
with DefaultRerank._model_lock:
|
|
if not DefaultRerank._model:
|
|
try:
|
|
DefaultRerank._model = FlagReranker(os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z]+/", "", model_name)), use_fp16=torch.cuda.is_available())
|
|
except Exception as e:
|
|
model_dir = snapshot_download(repo_id= model_name,
|
|
local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z]+/", "", model_name)),
|
|
local_dir_use_symlinks=False)
|
|
DefaultRerank._model = FlagReranker(model_dir, use_fp16=torch.cuda.is_available())
|
|
self._model = DefaultRerank._model
|
|
|
|
def similarity(self, query: str, texts: list):
|
|
pairs = [(query,truncate(t, 2048)) for t in texts]
|
|
token_count = 0
|
|
for _, t in pairs:
|
|
token_count += num_tokens_from_string(t)
|
|
batch_size = 4096
|
|
res = []
|
|
for i in range(0, len(pairs), batch_size):
|
|
scores = self._model.compute_score(pairs[i:i + batch_size], max_length=2048)
|
|
scores = sigmoid(np.array(scores)).tolist()
|
|
if isinstance(scores, float): res.append(scores)
|
|
else: res.extend(scores)
|
|
return np.array(res), token_count
|
|
|
|
|
|
class JinaRerank(Base):
|
|
def __init__(self, key, model_name="jina-reranker-v1-base-en",
|
|
base_url="https://api.jina.ai/v1/rerank"):
|
|
self.base_url = "https://api.jina.ai/v1/rerank"
|
|
self.headers = {
|
|
"Content-Type": "application/json",
|
|
"Authorization": f"Bearer {key}"
|
|
}
|
|
self.model_name = model_name
|
|
|
|
def similarity(self, query: str, texts: list):
|
|
texts = [truncate(t, 8196) for t in texts]
|
|
data = {
|
|
"model": self.model_name,
|
|
"query": query,
|
|
"documents": texts,
|
|
"top_n": len(texts)
|
|
}
|
|
res = requests.post(self.base_url, headers=self.headers, json=data).json()
|
|
return np.array([d["relevance_score"] for d in res["results"]]), res["usage"]["total_tokens"]
|
|
|
|
|
|
class YoudaoRerank(DefaultRerank):
|
|
_model = None
|
|
_model_lock = threading.Lock()
|
|
|
|
def __init__(self, key=None, model_name="maidalun1020/bce-reranker-base_v1", **kwargs):
|
|
from BCEmbedding import RerankerModel
|
|
if not YoudaoRerank._model:
|
|
with YoudaoRerank._model_lock:
|
|
if not YoudaoRerank._model:
|
|
try:
|
|
print("LOADING BCE...")
|
|
YoudaoRerank._model = RerankerModel(model_name_or_path=os.path.join(
|
|
get_home_cache_dir(),
|
|
re.sub(r"^[a-zA-Z]+/", "", model_name)))
|
|
except Exception as e:
|
|
YoudaoRerank._model = RerankerModel(
|
|
model_name_or_path=model_name.replace(
|
|
"maidalun1020", "InfiniFlow"))
|
|
|
|
self._model = YoudaoRerank._model
|
|
|
|
def similarity(self, query: str, texts: list):
|
|
pairs = [(query, truncate(t, self._model.max_length)) for t in texts]
|
|
token_count = 0
|
|
for _, t in pairs:
|
|
token_count += num_tokens_from_string(t)
|
|
batch_size = 32
|
|
res = []
|
|
for i in range(0, len(pairs), batch_size):
|
|
scores = self._model.compute_score(pairs[i:i + batch_size], max_length=self._model.max_length)
|
|
scores = sigmoid(np.array(scores)).tolist()
|
|
if isinstance(scores, float): res.append(scores)
|
|
else: res.extend(scores)
|
|
return np.array(res), token_count
|
|
|
|
|
|
class XInferenceRerank(Base):
|
|
def __init__(self, key="xxxxxxx", model_name="", base_url=""):
|
|
self.model_name = model_name
|
|
self.base_url = base_url
|
|
self.headers = {
|
|
"Content-Type": "application/json",
|
|
"accept": "application/json"
|
|
}
|
|
|
|
def similarity(self, query: str, texts: list):
|
|
data = {
|
|
"model": self.model_name,
|
|
"query": query,
|
|
"return_documents": "true",
|
|
"return_len": "true",
|
|
"documents": texts
|
|
}
|
|
res = requests.post(self.base_url, headers=self.headers, json=data).json()
|
|
return np.array([d["relevance_score"] for d in res["results"]]), res["meta"]["tokens"]["input_tokens"]+res["meta"]["tokens"]["output_tokens"]
|
|
|
|
|
|
class LocalAIRerank(Base):
|
|
def __init__(self, key, model_name, base_url):
|
|
pass
|
|
|
|
def similarity(self, query: str, texts: list):
|
|
raise NotImplementedError("The LocalAIRerank has not been implement")
|
|
|
|
|
|
class NvidiaRerank(Base):
|
|
def __init__(
|
|
self, key, model_name, base_url="https://ai.api.nvidia.com/v1/retrieval/nvidia/"
|
|
):
|
|
if not base_url:
|
|
base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/"
|
|
self.model_name = model_name
|
|
|
|
if self.model_name == "nvidia/nv-rerankqa-mistral-4b-v3":
|
|
self.base_url = os.path.join(
|
|
base_url, "nv-rerankqa-mistral-4b-v3", "reranking"
|
|
)
|
|
|
|
if self.model_name == "nvidia/rerank-qa-mistral-4b":
|
|
self.base_url = os.path.join(base_url, "reranking")
|
|
self.model_name = "nv-rerank-qa-mistral-4b:1"
|
|
|
|
self.headers = {
|
|
"accept": "application/json",
|
|
"Content-Type": "application/json",
|
|
"Authorization": f"Bearer {key}",
|
|
}
|
|
|
|
def similarity(self, query: str, texts: list):
|
|
token_count = num_tokens_from_string(query) + sum(
|
|
[num_tokens_from_string(t) for t in texts]
|
|
)
|
|
data = {
|
|
"model": self.model_name,
|
|
"query": {"text": query},
|
|
"passages": [{"text": text} for text in texts],
|
|
"truncate": "END",
|
|
"top_n": len(texts),
|
|
}
|
|
res = requests.post(self.base_url, headers=self.headers, json=data).json()
|
|
return (np.array([d["logit"] for d in res["rankings"]]), token_count)
|