ragflow/agent/component/retrieval.py
Song Fuchang bc3160f75a
Feat: Support knowledge base type input in agent flow debugger (#7471)
### What problem does this PR solve?

This is a follow-up of #7088 , adding a knowledge base type input to the
`Begin` component, and a knowledge base selector to the agent flow debug
input panel:


![image](https://github.com/user-attachments/assets/e4cd35f1-1c8e-4f69-bed4-5d613b96d148)

then you can select one or more knowledge bases when testing the agent:


![image](https://github.com/user-attachments/assets/724b547e-4790-4cd8-83d3-67e02f2e76d8)

Note: the lines changed in `agent/component/retrieval.py` after line 94
are modified by `ruff format` from the `pre-commit` hooks, no functional
change.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-05-06 19:30:27 +08:00

133 lines
4.6 KiB
Python

#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import logging
from abc import ABC
import pandas as pd
from api.db import LLMType
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api import settings
from agent.component.base import ComponentBase, ComponentParamBase
from rag.app.tag import label_question
from rag.prompts import kb_prompt
from rag.utils.tavily_conn import Tavily
class RetrievalParam(ComponentParamBase):
"""
Define the Retrieval component parameters.
"""
def __init__(self):
super().__init__()
self.similarity_threshold = 0.2
self.keywords_similarity_weight = 0.5
self.top_n = 8
self.top_k = 1024
self.kb_ids = []
self.kb_vars = []
self.rerank_id = ""
self.empty_response = ""
self.tavily_api_key = ""
self.use_kg = False
def check(self):
self.check_decimal_float(self.similarity_threshold, "[Retrieval] Similarity threshold")
self.check_decimal_float(self.keywords_similarity_weight, "[Retrieval] Keyword similarity weight")
self.check_positive_number(self.top_n, "[Retrieval] Top N")
class Retrieval(ComponentBase, ABC):
component_name = "Retrieval"
def _run(self, history, **kwargs):
query = self.get_input()
query = str(query["content"][0]) if "content" in query else ""
kb_ids: list[str] = self._param.kb_ids or []
kb_vars = self._fetch_outputs_from(self._param.kb_vars)
if len(kb_vars) > 0:
for kb_var in kb_vars:
if len(kb_var) == 1:
kb_var_value = str(kb_var["content"][0])
for v in kb_var_value.split(","):
kb_ids.append(v)
else:
for v in kb_var.to_dict("records"):
kb_ids.append(v["content"])
filtered_kb_ids: list[str] = [kb_id for kb_id in kb_ids if kb_id]
kbs = KnowledgebaseService.get_by_ids(filtered_kb_ids)
if not kbs:
return Retrieval.be_output("")
embd_nms = list(set([kb.embd_id for kb in kbs]))
assert len(embd_nms) == 1, "Knowledge bases use different embedding models."
embd_mdl = None
if embd_nms:
embd_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, embd_nms[0])
self._canvas.set_embedding_model(embd_nms[0])
rerank_mdl = None
if self._param.rerank_id:
rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
if kbs:
kbinfos = settings.retrievaler.retrieval(
query,
embd_mdl,
kbs[0].tenant_id,
filtered_kb_ids,
1,
self._param.top_n,
self._param.similarity_threshold,
1 - self._param.keywords_similarity_weight,
aggs=False,
rerank_mdl=rerank_mdl,
rank_feature=label_question(query, kbs),
)
else:
kbinfos = {"chunks": [], "doc_aggs": []}
if self._param.use_kg and kbs:
ck = settings.kg_retrievaler.retrieval(query, [kbs[0].tenant_id], filtered_kb_ids, embd_mdl, LLMBundle(kbs[0].tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
kbinfos["chunks"].insert(0, ck)
if self._param.tavily_api_key:
tav = Tavily(self._param.tavily_api_key)
tav_res = tav.retrieve_chunks(query)
kbinfos["chunks"].extend(tav_res["chunks"])
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
if not kbinfos["chunks"]:
df = Retrieval.be_output("")
if self._param.empty_response and self._param.empty_response.strip():
df["empty_response"] = self._param.empty_response
return df
df = pd.DataFrame({"content": kb_prompt(kbinfos, 200000), "chunks": json.dumps(kbinfos["chunks"])})
logging.debug("{} {}".format(query, df))
return df.dropna()