mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-22 22:20:07 +08:00

### What problem does this PR solve? Related source file is in Windows/DOS format, they are format to Unix format. ### Type of change - [x] Refactoring Signed-off-by: Jin Hai <haijin.chn@gmail.com>
90 lines
2.9 KiB
Python
90 lines
2.9 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
from openai.lib.azure import AzureOpenAI
|
|
from zhipuai import ZhipuAI
|
|
import io
|
|
from abc import ABC
|
|
from ollama import Client
|
|
from openai import OpenAI
|
|
import os
|
|
import json
|
|
from rag.utils import num_tokens_from_string
|
|
|
|
|
|
class Base(ABC):
|
|
def __init__(self, key, model_name):
|
|
pass
|
|
|
|
def transcription(self, audio, **kwargs):
|
|
transcription = self.client.audio.transcriptions.create(
|
|
model=self.model_name,
|
|
file=audio,
|
|
response_format="text"
|
|
)
|
|
return transcription.text.strip(), num_tokens_from_string(transcription.text.strip())
|
|
|
|
|
|
class GPTSeq2txt(Base):
|
|
def __init__(self, key, model_name="whisper-1", base_url="https://api.openai.com/v1"):
|
|
if not base_url: base_url = "https://api.openai.com/v1"
|
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
|
self.model_name = model_name
|
|
|
|
|
|
class QWenSeq2txt(Base):
|
|
def __init__(self, key, model_name="paraformer-realtime-8k-v1", **kwargs):
|
|
import dashscope
|
|
dashscope.api_key = key
|
|
self.model_name = model_name
|
|
|
|
def transcription(self, audio, format):
|
|
from http import HTTPStatus
|
|
from dashscope.audio.asr import Recognition
|
|
|
|
recognition = Recognition(model=self.model_name,
|
|
format=format,
|
|
sample_rate=16000,
|
|
callback=None)
|
|
result = recognition.call(audio)
|
|
|
|
ans = ""
|
|
if result.status_code == HTTPStatus.OK:
|
|
for sentence in result.get_sentence():
|
|
ans += str(sentence + '\n')
|
|
return ans, num_tokens_from_string(ans)
|
|
|
|
return "**ERROR**: " + result.message, 0
|
|
|
|
|
|
class OllamaSeq2txt(Base):
|
|
def __init__(self, key, model_name, lang="Chinese", **kwargs):
|
|
self.client = Client(host=kwargs["base_url"])
|
|
self.model_name = model_name
|
|
self.lang = lang
|
|
|
|
|
|
class AzureSeq2txt(Base):
|
|
def __init__(self, key, model_name, lang="Chinese", **kwargs):
|
|
self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01")
|
|
self.model_name = model_name
|
|
self.lang = lang
|
|
|
|
|
|
class XinferenceSeq2txt(Base):
|
|
def __init__(self, key, model_name="", base_url=""):
|
|
self.client = OpenAI(api_key="xxx", base_url=base_url)
|
|
self.model_name = model_name
|