ragflow/api/db/services/llm_service.py
Yongteng Lei df3890827d
Refa: change LLM chat output from full to delta (incremental) (#6534)
### What problem does this PR solve?

Change LLM chat output from full to delta (incremental)

### Type of change

- [x] Refactoring
2025-03-26 19:33:14 +08:00

342 lines
15 KiB
Python

#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from langfuse import Langfuse
from api import settings
from api.db import LLMType
from api.db.db_models import DB, LLM, LLMFactories, TenantLLM
from api.db.services.common_service import CommonService
from api.db.services.langfuse_service import TenantLangfuseService
from api.db.services.user_service import TenantService
from rag.llm import ChatModel, CvModel, EmbeddingModel, RerankModel, Seq2txtModel, TTSModel
class LLMFactoriesService(CommonService):
model = LLMFactories
class LLMService(CommonService):
model = LLM
class TenantLLMService(CommonService):
model = TenantLLM
@classmethod
@DB.connection_context()
def get_api_key(cls, tenant_id, model_name):
mdlnm, fid = TenantLLMService.split_model_name_and_factory(model_name)
if not fid:
objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm)
else:
objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm, llm_factory=fid)
if not objs:
return
return objs[0]
@classmethod
@DB.connection_context()
def get_my_llms(cls, tenant_id):
fields = [cls.model.llm_factory, LLMFactories.logo, LLMFactories.tags, cls.model.model_type, cls.model.llm_name, cls.model.used_tokens]
objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts()
return list(objs)
@staticmethod
def split_model_name_and_factory(model_name):
arr = model_name.split("@")
if len(arr) < 2:
return model_name, None
if len(arr) > 2:
return "@".join(arr[0:-1]), arr[-1]
# model name must be xxx@yyy
try:
model_factories = settings.FACTORY_LLM_INFOS
model_providers = set([f["name"] for f in model_factories])
if arr[-1] not in model_providers:
return model_name, None
return arr[0], arr[-1]
except Exception as e:
logging.exception(f"TenantLLMService.split_model_name_and_factory got exception: {e}")
return model_name, None
@classmethod
@DB.connection_context()
def get_model_config(cls, tenant_id, llm_type, llm_name=None):
e, tenant = TenantService.get_by_id(tenant_id)
if not e:
raise LookupError("Tenant not found")
if llm_type == LLMType.EMBEDDING.value:
mdlnm = tenant.embd_id if not llm_name else llm_name
elif llm_type == LLMType.SPEECH2TEXT.value:
mdlnm = tenant.asr_id
elif llm_type == LLMType.IMAGE2TEXT.value:
mdlnm = tenant.img2txt_id if not llm_name else llm_name
elif llm_type == LLMType.CHAT.value:
mdlnm = tenant.llm_id if not llm_name else llm_name
elif llm_type == LLMType.RERANK:
mdlnm = tenant.rerank_id if not llm_name else llm_name
elif llm_type == LLMType.TTS:
mdlnm = tenant.tts_id if not llm_name else llm_name
else:
assert False, "LLM type error"
model_config = cls.get_api_key(tenant_id, mdlnm)
mdlnm, fid = TenantLLMService.split_model_name_and_factory(mdlnm)
if model_config:
model_config = model_config.to_dict()
if not model_config:
if llm_type in [LLMType.EMBEDDING, LLMType.RERANK]:
llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
if llm and llm[0].fid in ["Youdao", "FastEmbed", "BAAI"]:
model_config = {"llm_factory": llm[0].fid, "api_key": "", "llm_name": mdlnm, "api_base": ""}
if not model_config:
if mdlnm == "flag-embedding":
model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "", "llm_name": llm_name, "api_base": ""}
else:
if not mdlnm:
raise LookupError(f"Type of {llm_type} model is not set.")
raise LookupError("Model({}) not authorized".format(mdlnm))
return model_config
@classmethod
@DB.connection_context()
def model_instance(cls, tenant_id, llm_type, llm_name=None, lang="Chinese"):
model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
if llm_type == LLMType.EMBEDDING.value:
if model_config["llm_factory"] not in EmbeddingModel:
return
return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
if llm_type == LLMType.RERANK:
if model_config["llm_factory"] not in RerankModel:
return
return RerankModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
if llm_type == LLMType.IMAGE2TEXT.value:
if model_config["llm_factory"] not in CvModel:
return
return CvModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], lang, base_url=model_config["api_base"])
if llm_type == LLMType.CHAT.value:
if model_config["llm_factory"] not in ChatModel:
return
return ChatModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
if llm_type == LLMType.SPEECH2TEXT:
if model_config["llm_factory"] not in Seq2txtModel:
return
return Seq2txtModel[model_config["llm_factory"]](key=model_config["api_key"], model_name=model_config["llm_name"], lang=lang, base_url=model_config["api_base"])
if llm_type == LLMType.TTS:
if model_config["llm_factory"] not in TTSModel:
return
return TTSModel[model_config["llm_factory"]](
model_config["api_key"],
model_config["llm_name"],
base_url=model_config["api_base"],
)
@classmethod
@DB.connection_context()
def increase_usage(cls, tenant_id, llm_type, used_tokens, llm_name=None):
e, tenant = TenantService.get_by_id(tenant_id)
if not e:
logging.error(f"Tenant not found: {tenant_id}")
return 0
llm_map = {
LLMType.EMBEDDING.value: tenant.embd_id,
LLMType.SPEECH2TEXT.value: tenant.asr_id,
LLMType.IMAGE2TEXT.value: tenant.img2txt_id,
LLMType.CHAT.value: tenant.llm_id if not llm_name else llm_name,
LLMType.RERANK.value: tenant.rerank_id if not llm_name else llm_name,
LLMType.TTS.value: tenant.tts_id if not llm_name else llm_name,
}
mdlnm = llm_map.get(llm_type)
if mdlnm is None:
logging.error(f"LLM type error: {llm_type}")
return 0
llm_name, llm_factory = TenantLLMService.split_model_name_and_factory(mdlnm)
try:
num = (
cls.model.update(used_tokens=cls.model.used_tokens + used_tokens)
.where(cls.model.tenant_id == tenant_id, cls.model.llm_name == llm_name, cls.model.llm_factory == llm_factory if llm_factory else True)
.execute()
)
except Exception:
logging.exception("TenantLLMService.increase_usage got exception,Failed to update used_tokens for tenant_id=%s, llm_name=%s", tenant_id, llm_name)
return 0
return num
@classmethod
@DB.connection_context()
def get_openai_models(cls):
objs = cls.model.select().where((cls.model.llm_factory == "OpenAI"), ~(cls.model.llm_name == "text-embedding-3-small"), ~(cls.model.llm_name == "text-embedding-3-large")).dicts()
return list(objs)
class LLMBundle:
def __init__(self, tenant_id, llm_type, llm_name=None, lang="Chinese"):
self.tenant_id = tenant_id
self.llm_type = llm_type
self.llm_name = llm_name
self.mdl = TenantLLMService.model_instance(tenant_id, llm_type, llm_name, lang=lang)
assert self.mdl, "Can't find model for {}/{}/{}".format(tenant_id, llm_type, llm_name)
model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
self.max_length = model_config.get("max_tokens", 8192)
langfuse_keys = TenantLangfuseService.filter_by_tenant(tenant_id=tenant_id)
if langfuse_keys:
langfuse = Langfuse(public_key=langfuse_keys.public_key, secret_key=langfuse_keys.secret_key, host=langfuse_keys.host)
if langfuse.auth_check():
self.langfuse = langfuse
self.trace = self.langfuse.trace(name=f"{self.llm_type}-{self.llm_name}")
else:
self.langfuse = None
def encode(self, texts: list):
if self.langfuse:
generation = self.trace.generation(name="encode", model=self.llm_name, input={"texts": texts})
embeddings, used_tokens = self.mdl.encode(texts)
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
logging.error("LLMBundle.encode can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
if self.langfuse:
generation.end(usage_details={"total_tokens": used_tokens})
return embeddings, used_tokens
def encode_queries(self, query: str):
if self.langfuse:
generation = self.trace.generation(name="encode_queries", model=self.llm_name, input={"query": query})
emd, used_tokens = self.mdl.encode_queries(query)
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
logging.error("LLMBundle.encode_queries can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
if self.langfuse:
generation.end(usage_details={"total_tokens": used_tokens})
return emd, used_tokens
def similarity(self, query: str, texts: list):
if self.langfuse:
generation = self.trace.generation(name="similarity", model=self.llm_name, input={"query": query, "texts": texts})
sim, used_tokens = self.mdl.similarity(query, texts)
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
logging.error("LLMBundle.similarity can't update token usage for {}/RERANK used_tokens: {}".format(self.tenant_id, used_tokens))
if self.langfuse:
generation.end(usage_details={"total_tokens": used_tokens})
return sim, used_tokens
def describe(self, image, max_tokens=300):
if self.langfuse:
generation = self.trace.generation(name="describe", metadata={"model": self.llm_name})
txt, used_tokens = self.mdl.describe(image)
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
logging.error("LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
if self.langfuse:
generation.end(output={"output": txt}, usage_details={"total_tokens": used_tokens})
return txt
def describe_with_prompt(self, image, prompt):
if self.langfuse:
generation = self.trace.generation(name="describe_with_prompt", metadata={"model": self.llm_name, "prompt": prompt})
txt, used_tokens = self.mdl.describe_with_prompt(image, prompt)
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
logging.error("LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
if self.langfuse:
generation.end(output={"output": txt}, usage_details={"total_tokens": used_tokens})
return txt
def transcription(self, audio):
if self.langfuse:
generation = self.trace.generation(name="transcription", metadata={"model": self.llm_name})
txt, used_tokens = self.mdl.transcription(audio)
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
logging.error("LLMBundle.transcription can't update token usage for {}/SEQUENCE2TXT used_tokens: {}".format(self.tenant_id, used_tokens))
if self.langfuse:
generation.end(output={"output": txt}, usage_details={"total_tokens": used_tokens})
return txt
def tts(self, text):
if self.langfuse:
span = self.trace.span(name="tts", input={"text": text})
for chunk in self.mdl.tts(text):
if isinstance(chunk, int):
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, chunk, self.llm_name):
logging.error("LLMBundle.tts can't update token usage for {}/TTS".format(self.tenant_id))
return
yield chunk
if self.langfuse:
span.end()
def chat(self, system, history, gen_conf):
if self.langfuse:
generation = self.trace.generation(name="chat", model=self.llm_name, input={"system": system, "history": history})
txt, used_tokens = self.mdl.chat(system, history, gen_conf)
if isinstance(txt, int) and not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens, self.llm_name):
logging.error("LLMBundle.chat can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name, used_tokens))
if self.langfuse:
generation.end(output={"output": txt}, usage_details={"total_tokens": used_tokens})
return txt
def chat_streamly(self, system, history, gen_conf):
if self.langfuse:
generation = self.trace.generation(name="chat_streamly", model=self.llm_name, input={"system": system, "history": history})
ans = ""
for txt in self.mdl.chat_streamly(system, history, gen_conf):
if isinstance(txt, int):
if self.langfuse:
generation.end(output={"output": ans})
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, txt, self.llm_name):
logging.error("LLMBundle.chat_streamly can't update token usage for {}/CHAT llm_name: {}, content: {}".format(self.tenant_id, self.llm_name, txt))
return ans
if txt.endswith("</think>"):
ans = ans.rstrip("</think>")
ans += txt
yield ans