mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-05-31 02:25:49 +08:00

### What problem does this PR solve? Introduced task priority ### Type of change - [x] New Feature (non-breaking change which adds functionality)
434 lines
17 KiB
Python
434 lines
17 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import os
|
|
import random
|
|
import xxhash
|
|
from datetime import datetime
|
|
|
|
from api.db.db_utils import bulk_insert_into_db
|
|
from deepdoc.parser import PdfParser
|
|
from peewee import JOIN
|
|
from api.db.db_models import DB, File2Document, File
|
|
from api.db import StatusEnum, FileType, TaskStatus
|
|
from api.db.db_models import Task, Document, Knowledgebase, Tenant
|
|
from api.db.services.common_service import CommonService
|
|
from api.db.services.document_service import DocumentService
|
|
from api.utils import current_timestamp, get_uuid
|
|
from deepdoc.parser.excel_parser import RAGFlowExcelParser
|
|
from rag.settings import get_svr_queue_name
|
|
from rag.utils.storage_factory import STORAGE_IMPL
|
|
from rag.utils.redis_conn import REDIS_CONN
|
|
from api import settings
|
|
from rag.nlp import search
|
|
|
|
|
|
def trim_header_by_lines(text: str, max_length) -> str:
|
|
# Trim header text to maximum length while preserving line breaks
|
|
# Args:
|
|
# text: Input text to trim
|
|
# max_length: Maximum allowed length
|
|
# Returns:
|
|
# Trimmed text
|
|
len_text = len(text)
|
|
if len_text <= max_length:
|
|
return text
|
|
for i in range(len_text):
|
|
if text[i] == '\n' and len_text - i <= max_length:
|
|
return text[i + 1:]
|
|
return text
|
|
|
|
|
|
class TaskService(CommonService):
|
|
"""Service class for managing document processing tasks.
|
|
|
|
This class extends CommonService to provide specialized functionality for document
|
|
processing task management, including task creation, progress tracking, and chunk
|
|
management. It handles various document types (PDF, Excel, etc.) and manages their
|
|
processing lifecycle.
|
|
|
|
The class implements a robust task queue system with retry mechanisms and progress
|
|
tracking, supporting both synchronous and asynchronous task execution.
|
|
|
|
Attributes:
|
|
model: The Task model class for database operations.
|
|
"""
|
|
model = Task
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_task(cls, task_id):
|
|
"""Retrieve detailed task information by task ID.
|
|
|
|
This method fetches comprehensive task details including associated document,
|
|
knowledge base, and tenant information. It also handles task retry logic and
|
|
progress updates.
|
|
|
|
Args:
|
|
task_id (str): The unique identifier of the task to retrieve.
|
|
|
|
Returns:
|
|
dict: Task details dictionary containing all task information and related metadata.
|
|
Returns None if task is not found or has exceeded retry limit.
|
|
"""
|
|
fields = [
|
|
cls.model.id,
|
|
cls.model.doc_id,
|
|
cls.model.from_page,
|
|
cls.model.to_page,
|
|
cls.model.retry_count,
|
|
Document.kb_id,
|
|
Document.parser_id,
|
|
Document.parser_config,
|
|
Document.name,
|
|
Document.type,
|
|
Document.location,
|
|
Document.size,
|
|
Knowledgebase.tenant_id,
|
|
Knowledgebase.language,
|
|
Knowledgebase.embd_id,
|
|
Knowledgebase.pagerank,
|
|
Knowledgebase.parser_config.alias("kb_parser_config"),
|
|
Tenant.img2txt_id,
|
|
Tenant.asr_id,
|
|
Tenant.llm_id,
|
|
cls.model.update_time,
|
|
]
|
|
docs = (
|
|
cls.model.select(*fields)
|
|
.join(Document, on=(cls.model.doc_id == Document.id))
|
|
.join(Knowledgebase, on=(Document.kb_id == Knowledgebase.id))
|
|
.join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id))
|
|
.where(cls.model.id == task_id)
|
|
)
|
|
docs = list(docs.dicts())
|
|
if not docs:
|
|
return None
|
|
|
|
msg = f"\n{datetime.now().strftime('%H:%M:%S')} Task has been received."
|
|
prog = random.random() / 10.0
|
|
if docs[0]["retry_count"] >= 3:
|
|
msg = "\nERROR: Task is abandoned after 3 times attempts."
|
|
prog = -1
|
|
|
|
cls.model.update(
|
|
progress_msg=cls.model.progress_msg + msg,
|
|
progress=prog,
|
|
retry_count=docs[0]["retry_count"] + 1,
|
|
).where(cls.model.id == docs[0]["id"]).execute()
|
|
|
|
if docs[0]["retry_count"] >= 3:
|
|
return None
|
|
|
|
return docs[0]
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_tasks(cls, doc_id: str):
|
|
"""Retrieve all tasks associated with a document.
|
|
|
|
This method fetches all processing tasks for a given document, ordered by page
|
|
number and creation time. It includes task progress and chunk information.
|
|
|
|
Args:
|
|
doc_id (str): The unique identifier of the document.
|
|
|
|
Returns:
|
|
list[dict]: List of task dictionaries containing task details.
|
|
Returns None if no tasks are found.
|
|
"""
|
|
fields = [
|
|
cls.model.id,
|
|
cls.model.from_page,
|
|
cls.model.progress,
|
|
cls.model.digest,
|
|
cls.model.chunk_ids,
|
|
]
|
|
tasks = (
|
|
cls.model.select(*fields).order_by(cls.model.from_page.asc(), cls.model.create_time.desc())
|
|
.where(cls.model.doc_id == doc_id)
|
|
)
|
|
tasks = list(tasks.dicts())
|
|
if not tasks:
|
|
return None
|
|
return tasks
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def update_chunk_ids(cls, id: str, chunk_ids: str):
|
|
"""Update the chunk IDs associated with a task.
|
|
|
|
This method updates the chunk_ids field of a task, which stores the IDs of
|
|
processed document chunks in a space-separated string format.
|
|
|
|
Args:
|
|
id (str): The unique identifier of the task.
|
|
chunk_ids (str): Space-separated string of chunk identifiers.
|
|
"""
|
|
cls.model.update(chunk_ids=chunk_ids).where(cls.model.id == id).execute()
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_ongoing_doc_name(cls):
|
|
"""Get names of documents that are currently being processed.
|
|
|
|
This method retrieves information about documents that are in the processing state,
|
|
including their locations and associated IDs. It uses database locking to ensure
|
|
thread safety when accessing the task information.
|
|
|
|
Returns:
|
|
list[tuple]: A list of tuples, each containing (parent_id/kb_id, location)
|
|
for documents currently being processed. Returns empty list if
|
|
no documents are being processed.
|
|
"""
|
|
with DB.lock("get_task", -1):
|
|
docs = (
|
|
cls.model.select(
|
|
*[Document.id, Document.kb_id, Document.location, File.parent_id]
|
|
)
|
|
.join(Document, on=(cls.model.doc_id == Document.id))
|
|
.join(
|
|
File2Document,
|
|
on=(File2Document.document_id == Document.id),
|
|
join_type=JOIN.LEFT_OUTER,
|
|
)
|
|
.join(
|
|
File,
|
|
on=(File2Document.file_id == File.id),
|
|
join_type=JOIN.LEFT_OUTER,
|
|
)
|
|
.where(
|
|
Document.status == StatusEnum.VALID.value,
|
|
Document.run == TaskStatus.RUNNING.value,
|
|
~(Document.type == FileType.VIRTUAL.value),
|
|
cls.model.progress < 1,
|
|
cls.model.create_time >= current_timestamp() - 1000 * 600,
|
|
)
|
|
)
|
|
docs = list(docs.dicts())
|
|
if not docs:
|
|
return []
|
|
|
|
return list(
|
|
set(
|
|
[
|
|
(
|
|
d["parent_id"] if d["parent_id"] else d["kb_id"],
|
|
d["location"],
|
|
)
|
|
for d in docs
|
|
]
|
|
)
|
|
)
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def do_cancel(cls, id):
|
|
"""Check if a task should be cancelled based on its document status.
|
|
|
|
This method determines whether a task should be cancelled by checking the
|
|
associated document's run status and progress. A task should be cancelled
|
|
if its document is marked for cancellation or has negative progress.
|
|
|
|
Args:
|
|
id (str): The unique identifier of the task to check.
|
|
|
|
Returns:
|
|
bool: True if the task should be cancelled, False otherwise.
|
|
"""
|
|
task = cls.model.get_by_id(id)
|
|
_, doc = DocumentService.get_by_id(task.doc_id)
|
|
return doc.run == TaskStatus.CANCEL.value or doc.progress < 0
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def update_progress(cls, id, info):
|
|
"""Update the progress information for a task.
|
|
|
|
This method updates both the progress message and completion percentage of a task.
|
|
It handles platform-specific behavior (macOS vs others) and uses database locking
|
|
when necessary to ensure thread safety.
|
|
|
|
Args:
|
|
id (str): The unique identifier of the task to update.
|
|
info (dict): Dictionary containing progress information with keys:
|
|
- progress_msg (str, optional): Progress message to append
|
|
- progress (float, optional): Progress percentage (0.0 to 1.0)
|
|
"""
|
|
if os.environ.get("MACOS"):
|
|
if info["progress_msg"]:
|
|
task = cls.model.get_by_id(id)
|
|
progress_msg = trim_header_by_lines(task.progress_msg + "\n" + info["progress_msg"], 3000)
|
|
cls.model.update(progress_msg=progress_msg).where(cls.model.id == id).execute()
|
|
if "progress" in info:
|
|
cls.model.update(progress=info["progress"]).where(
|
|
cls.model.id == id
|
|
).execute()
|
|
return
|
|
|
|
with DB.lock("update_progress", -1):
|
|
if info["progress_msg"]:
|
|
task = cls.model.get_by_id(id)
|
|
progress_msg = trim_header_by_lines(task.progress_msg + "\n" + info["progress_msg"], 3000)
|
|
cls.model.update(progress_msg=progress_msg).where(cls.model.id == id).execute()
|
|
if "progress" in info:
|
|
cls.model.update(progress=info["progress"]).where(
|
|
cls.model.id == id
|
|
).execute()
|
|
|
|
|
|
def queue_tasks(doc: dict, bucket: str, name: str, priority: int):
|
|
"""Create and queue document processing tasks.
|
|
|
|
This function creates processing tasks for a document based on its type and configuration.
|
|
It handles different document types (PDF, Excel, etc.) differently and manages task
|
|
chunking and configuration. It also implements task reuse optimization by checking
|
|
for previously completed tasks.
|
|
|
|
Args:
|
|
doc (dict): Document dictionary containing metadata and configuration.
|
|
bucket (str): Storage bucket name where the document is stored.
|
|
name (str): File name of the document.
|
|
priority (int, optional): Priority level for task queueing (default is 0).
|
|
|
|
Note:
|
|
- For PDF documents, tasks are created per page range based on configuration
|
|
- For Excel documents, tasks are created per row range
|
|
- Task digests are calculated for optimization and reuse
|
|
- Previous task chunks may be reused if available
|
|
"""
|
|
def new_task():
|
|
return {"id": get_uuid(), "doc_id": doc["id"], "progress": 0.0, "from_page": 0, "to_page": 100000000}
|
|
|
|
parse_task_array = []
|
|
|
|
if doc["type"] == FileType.PDF.value:
|
|
file_bin = STORAGE_IMPL.get(bucket, name)
|
|
do_layout = doc["parser_config"].get("layout_recognize", "DeepDOC")
|
|
pages = PdfParser.total_page_number(doc["name"], file_bin)
|
|
page_size = doc["parser_config"].get("task_page_size", 12)
|
|
if doc["parser_id"] == "paper":
|
|
page_size = doc["parser_config"].get("task_page_size", 22)
|
|
if doc["parser_id"] in ["one", "knowledge_graph"] or do_layout != "DeepDOC":
|
|
page_size = 10 ** 9
|
|
page_ranges = doc["parser_config"].get("pages") or [(1, 10 ** 5)]
|
|
for s, e in page_ranges:
|
|
s -= 1
|
|
s = max(0, s)
|
|
e = min(e - 1, pages)
|
|
for p in range(s, e, page_size):
|
|
task = new_task()
|
|
task["from_page"] = p
|
|
task["to_page"] = min(p + page_size, e)
|
|
parse_task_array.append(task)
|
|
|
|
elif doc["parser_id"] == "table":
|
|
file_bin = STORAGE_IMPL.get(bucket, name)
|
|
rn = RAGFlowExcelParser.row_number(doc["name"], file_bin)
|
|
for i in range(0, rn, 3000):
|
|
task = new_task()
|
|
task["from_page"] = i
|
|
task["to_page"] = min(i + 3000, rn)
|
|
parse_task_array.append(task)
|
|
else:
|
|
parse_task_array.append(new_task())
|
|
|
|
chunking_config = DocumentService.get_chunking_config(doc["id"])
|
|
for task in parse_task_array:
|
|
hasher = xxhash.xxh64()
|
|
for field in sorted(chunking_config.keys()):
|
|
if field == "parser_config":
|
|
for k in ["raptor", "graphrag"]:
|
|
if k in chunking_config[field]:
|
|
del chunking_config[field][k]
|
|
hasher.update(str(chunking_config[field]).encode("utf-8"))
|
|
for field in ["doc_id", "from_page", "to_page"]:
|
|
hasher.update(str(task.get(field, "")).encode("utf-8"))
|
|
task_digest = hasher.hexdigest()
|
|
task["digest"] = task_digest
|
|
task["progress"] = 0.0
|
|
task["priority"] = priority
|
|
|
|
prev_tasks = TaskService.get_tasks(doc["id"])
|
|
ck_num = 0
|
|
if prev_tasks:
|
|
for task in parse_task_array:
|
|
ck_num += reuse_prev_task_chunks(task, prev_tasks, chunking_config)
|
|
TaskService.filter_delete([Task.doc_id == doc["id"]])
|
|
chunk_ids = []
|
|
for task in prev_tasks:
|
|
if task["chunk_ids"]:
|
|
chunk_ids.extend(task["chunk_ids"].split())
|
|
if chunk_ids:
|
|
settings.docStoreConn.delete({"id": chunk_ids}, search.index_name(chunking_config["tenant_id"]),
|
|
chunking_config["kb_id"])
|
|
DocumentService.update_by_id(doc["id"], {"chunk_num": ck_num})
|
|
|
|
bulk_insert_into_db(Task, parse_task_array, True)
|
|
DocumentService.begin2parse(doc["id"])
|
|
|
|
unfinished_task_array = [task for task in parse_task_array if task["progress"] < 1.0]
|
|
for unfinished_task in unfinished_task_array:
|
|
assert REDIS_CONN.queue_product(
|
|
get_svr_queue_name(priority), message=unfinished_task
|
|
), "Can't access Redis. Please check the Redis' status."
|
|
|
|
|
|
def reuse_prev_task_chunks(task: dict, prev_tasks: list[dict], chunking_config: dict):
|
|
"""Attempt to reuse chunks from previous tasks for optimization.
|
|
|
|
This function checks if chunks from previously completed tasks can be reused for
|
|
the current task, which can significantly improve processing efficiency. It matches
|
|
tasks based on page ranges and configuration digests.
|
|
|
|
Args:
|
|
task (dict): Current task dictionary to potentially reuse chunks for.
|
|
prev_tasks (list[dict]): List of previous task dictionaries to check for reuse.
|
|
chunking_config (dict): Configuration dictionary for chunk processing.
|
|
|
|
Returns:
|
|
int: Number of chunks successfully reused. Returns 0 if no chunks could be reused.
|
|
|
|
Note:
|
|
Chunks can only be reused if:
|
|
- A previous task exists with matching page range and configuration digest
|
|
- The previous task was completed successfully (progress = 1.0)
|
|
- The previous task has valid chunk IDs
|
|
"""
|
|
idx = 0
|
|
while idx < len(prev_tasks):
|
|
prev_task = prev_tasks[idx]
|
|
if prev_task.get("from_page", 0) == task.get("from_page", 0) \
|
|
and prev_task.get("digest", 0) == task.get("digest", ""):
|
|
break
|
|
idx += 1
|
|
|
|
if idx >= len(prev_tasks):
|
|
return 0
|
|
prev_task = prev_tasks[idx]
|
|
if prev_task["progress"] < 1.0 or not prev_task["chunk_ids"]:
|
|
return 0
|
|
task["chunk_ids"] = prev_task["chunk_ids"]
|
|
task["progress"] = 1.0
|
|
if "from_page" in task and "to_page" in task and int(task['to_page']) - int(task['from_page']) >= 10 ** 6:
|
|
task["progress_msg"] = f"Page({task['from_page']}~{task['to_page']}): "
|
|
else:
|
|
task["progress_msg"] = ""
|
|
task["progress_msg"] = " ".join(
|
|
[datetime.now().strftime("%H:%M:%S"), task["progress_msg"], "Reused previous task's chunks."])
|
|
prev_task["chunk_ids"] = ""
|
|
|
|
return len(task["chunk_ids"].split())
|