mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-23 22:50:17 +08:00
358 lines
12 KiB
Python
358 lines
12 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import _thread as thread
|
|
import base64
|
|
import hashlib
|
|
import hmac
|
|
import json
|
|
import queue
|
|
import re
|
|
import ssl
|
|
import time
|
|
from abc import ABC
|
|
from datetime import datetime
|
|
from time import mktime
|
|
from typing import Annotated, Literal
|
|
from urllib.parse import urlencode
|
|
from wsgiref.handlers import format_date_time
|
|
|
|
import httpx
|
|
import ormsgpack
|
|
import requests
|
|
import websocket
|
|
from pydantic import BaseModel, conint
|
|
|
|
from rag.utils import num_tokens_from_string
|
|
|
|
|
|
class ServeReferenceAudio(BaseModel):
|
|
audio: bytes
|
|
text: str
|
|
|
|
|
|
class ServeTTSRequest(BaseModel):
|
|
text: str
|
|
chunk_length: Annotated[int, conint(ge=100, le=300, strict=True)] = 200
|
|
# Audio format
|
|
format: Literal["wav", "pcm", "mp3"] = "mp3"
|
|
mp3_bitrate: Literal[64, 128, 192] = 128
|
|
# References audios for in-context learning
|
|
references: list[ServeReferenceAudio] = []
|
|
# Reference id
|
|
# For example, if you want use https://fish.audio/m/7f92f8afb8ec43bf81429cc1c9199cb1/
|
|
# Just pass 7f92f8afb8ec43bf81429cc1c9199cb1
|
|
reference_id: str | None = None
|
|
# Normalize text for en & zh, this increase stability for numbers
|
|
normalize: bool = True
|
|
# Balance mode will reduce latency to 300ms, but may decrease stability
|
|
latency: Literal["normal", "balanced"] = "normal"
|
|
|
|
|
|
class Base(ABC):
|
|
def __init__(self, key, model_name, base_url):
|
|
pass
|
|
|
|
def tts(self, audio):
|
|
pass
|
|
|
|
def normalize_text(self, text):
|
|
return re.sub(r'(\*\*|##\d+\$\$|#)', '', text)
|
|
|
|
|
|
class FishAudioTTS(Base):
|
|
def __init__(self, key, model_name, base_url="https://api.fish.audio/v1/tts"):
|
|
if not base_url:
|
|
base_url = "https://api.fish.audio/v1/tts"
|
|
key = json.loads(key)
|
|
self.headers = {
|
|
"api-key": key.get("fish_audio_ak"),
|
|
"content-type": "application/msgpack",
|
|
}
|
|
self.ref_id = key.get("fish_audio_refid")
|
|
self.base_url = base_url
|
|
|
|
def tts(self, text):
|
|
from http import HTTPStatus
|
|
|
|
text = self.normalize_text(text)
|
|
request = ServeTTSRequest(text=text, reference_id=self.ref_id)
|
|
|
|
with httpx.Client() as client:
|
|
try:
|
|
with client.stream(
|
|
method="POST",
|
|
url=self.base_url,
|
|
content=ormsgpack.packb(
|
|
request, option=ormsgpack.OPT_SERIALIZE_PYDANTIC
|
|
),
|
|
headers=self.headers,
|
|
timeout=None,
|
|
) as response:
|
|
if response.status_code == HTTPStatus.OK:
|
|
for chunk in response.iter_bytes():
|
|
yield chunk
|
|
else:
|
|
response.raise_for_status()
|
|
|
|
yield num_tokens_from_string(text)
|
|
|
|
except httpx.HTTPStatusError as e:
|
|
raise RuntimeError(f"**ERROR**: {e}")
|
|
|
|
|
|
class QwenTTS(Base):
|
|
def __init__(self, key, model_name, base_url=""):
|
|
import dashscope
|
|
|
|
self.model_name = model_name
|
|
dashscope.api_key = key
|
|
|
|
def tts(self, text):
|
|
from dashscope.api_entities.dashscope_response import SpeechSynthesisResponse
|
|
from dashscope.audio.tts import ResultCallback, SpeechSynthesizer, SpeechSynthesisResult
|
|
from collections import deque
|
|
|
|
class Callback(ResultCallback):
|
|
def __init__(self) -> None:
|
|
self.dque = deque()
|
|
|
|
def _run(self):
|
|
while True:
|
|
if not self.dque:
|
|
time.sleep(0)
|
|
continue
|
|
val = self.dque.popleft()
|
|
if val:
|
|
yield val
|
|
else:
|
|
break
|
|
|
|
def on_open(self):
|
|
pass
|
|
|
|
def on_complete(self):
|
|
self.dque.append(None)
|
|
|
|
def on_error(self, response: SpeechSynthesisResponse):
|
|
raise RuntimeError(str(response))
|
|
|
|
def on_close(self):
|
|
pass
|
|
|
|
def on_event(self, result: SpeechSynthesisResult):
|
|
if result.get_audio_frame() is not None:
|
|
self.dque.append(result.get_audio_frame())
|
|
|
|
text = self.normalize_text(text)
|
|
callback = Callback()
|
|
SpeechSynthesizer.call(model=self.model_name,
|
|
text=text,
|
|
callback=callback,
|
|
format="mp3")
|
|
try:
|
|
for data in callback._run():
|
|
yield data
|
|
yield num_tokens_from_string(text)
|
|
|
|
except Exception as e:
|
|
raise RuntimeError(f"**ERROR**: {e}")
|
|
|
|
|
|
class OpenAITTS(Base):
|
|
def __init__(self, key, model_name="tts-1", base_url="https://api.openai.com/v1"):
|
|
if not base_url:
|
|
base_url = "https://api.openai.com/v1"
|
|
self.api_key = key
|
|
self.model_name = model_name
|
|
self.base_url = base_url
|
|
self.headers = {
|
|
"Authorization": f"Bearer {self.api_key}",
|
|
"Content-Type": "application/json"
|
|
}
|
|
|
|
def tts(self, text, voice="alloy"):
|
|
text = self.normalize_text(text)
|
|
payload = {
|
|
"model": self.model_name,
|
|
"voice": voice,
|
|
"input": text
|
|
}
|
|
|
|
response = requests.post(f"{self.base_url}/audio/speech", headers=self.headers, json=payload, stream=True)
|
|
|
|
if response.status_code != 200:
|
|
raise Exception(f"**Error**: {response.status_code}, {response.text}")
|
|
for chunk in response.iter_content():
|
|
if chunk:
|
|
yield chunk
|
|
|
|
|
|
class SparkTTS:
|
|
STATUS_FIRST_FRAME = 0
|
|
STATUS_CONTINUE_FRAME = 1
|
|
STATUS_LAST_FRAME = 2
|
|
|
|
def __init__(self, key, model_name, base_url=""):
|
|
key = json.loads(key)
|
|
self.APPID = key.get("spark_app_id", "xxxxxxx")
|
|
self.APISecret = key.get("spark_api_secret", "xxxxxxx")
|
|
self.APIKey = key.get("spark_api_key", "xxxxxx")
|
|
self.model_name = model_name
|
|
self.CommonArgs = {"app_id": self.APPID}
|
|
self.audio_queue = queue.Queue()
|
|
|
|
# 用来存储音频数据
|
|
|
|
# 生成url
|
|
def create_url(self):
|
|
url = 'wss://tts-api.xfyun.cn/v2/tts'
|
|
now = datetime.now()
|
|
date = format_date_time(mktime(now.timetuple()))
|
|
signature_origin = "host: " + "ws-api.xfyun.cn" + "\n"
|
|
signature_origin += "date: " + date + "\n"
|
|
signature_origin += "GET " + "/v2/tts " + "HTTP/1.1"
|
|
signature_sha = hmac.new(self.APISecret.encode('utf-8'), signature_origin.encode('utf-8'),
|
|
digestmod=hashlib.sha256).digest()
|
|
signature_sha = base64.b64encode(signature_sha).decode(encoding='utf-8')
|
|
authorization_origin = "api_key=\"%s\", algorithm=\"%s\", headers=\"%s\", signature=\"%s\"" % (
|
|
self.APIKey, "hmac-sha256", "host date request-line", signature_sha)
|
|
authorization = base64.b64encode(authorization_origin.encode('utf-8')).decode(encoding='utf-8')
|
|
v = {
|
|
"authorization": authorization,
|
|
"date": date,
|
|
"host": "ws-api.xfyun.cn"
|
|
}
|
|
url = url + '?' + urlencode(v)
|
|
return url
|
|
|
|
def tts(self, text):
|
|
BusinessArgs = {"aue": "lame", "sfl": 1, "auf": "audio/L16;rate=16000", "vcn": self.model_name, "tte": "utf8"}
|
|
Data = {"status": 2, "text": base64.b64encode(text.encode('utf-8')).decode('utf-8')}
|
|
CommonArgs = {"app_id": self.APPID}
|
|
audio_queue = self.audio_queue
|
|
model_name = self.model_name
|
|
|
|
class Callback:
|
|
def __init__(self):
|
|
self.audio_queue = audio_queue
|
|
|
|
def on_message(self, ws, message):
|
|
message = json.loads(message)
|
|
code = message["code"]
|
|
sid = message["sid"]
|
|
audio = message["data"]["audio"]
|
|
audio = base64.b64decode(audio)
|
|
status = message["data"]["status"]
|
|
if status == 2:
|
|
ws.close()
|
|
if code != 0:
|
|
errMsg = message["message"]
|
|
raise Exception(f"sid:{sid} call error:{errMsg} code:{code}")
|
|
else:
|
|
self.audio_queue.put(audio)
|
|
|
|
def on_error(self, ws, error):
|
|
raise Exception(error)
|
|
|
|
def on_close(self, ws, close_status_code, close_msg):
|
|
self.audio_queue.put(None) # 放入 None 作为结束标志
|
|
|
|
def on_open(self, ws):
|
|
def run(*args):
|
|
d = {"common": CommonArgs,
|
|
"business": BusinessArgs,
|
|
"data": Data}
|
|
ws.send(json.dumps(d))
|
|
|
|
thread.start_new_thread(run, ())
|
|
|
|
wsUrl = self.create_url()
|
|
websocket.enableTrace(False)
|
|
a = Callback()
|
|
ws = websocket.WebSocketApp(wsUrl, on_open=a.on_open, on_error=a.on_error, on_close=a.on_close,
|
|
on_message=a.on_message)
|
|
status_code = 0
|
|
ws.run_forever(sslopt={"cert_reqs": ssl.CERT_NONE})
|
|
while True:
|
|
audio_chunk = self.audio_queue.get()
|
|
if audio_chunk is None:
|
|
if status_code == 0:
|
|
raise Exception(
|
|
f"Fail to access model({model_name}) using the provided credentials. **ERROR**: Invalid APPID, API Secret, or API Key.")
|
|
else:
|
|
break
|
|
status_code = 1
|
|
yield audio_chunk
|
|
|
|
|
|
class XinferenceTTS:
|
|
def __init__(self, key, model_name, **kwargs):
|
|
self.base_url = kwargs.get("base_url", None)
|
|
self.model_name = model_name
|
|
self.headers = {
|
|
"accept": "application/json",
|
|
"Content-Type": "application/json"
|
|
}
|
|
|
|
def tts(self, text, voice="中文女", stream=True):
|
|
payload = {
|
|
"model": self.model_name,
|
|
"input": text,
|
|
"voice": voice
|
|
}
|
|
|
|
response = requests.post(
|
|
f"{self.base_url}/v1/audio/speech",
|
|
headers=self.headers,
|
|
json=payload,
|
|
stream=stream
|
|
)
|
|
|
|
if response.status_code != 200:
|
|
raise Exception(f"**Error**: {response.status_code}, {response.text}")
|
|
|
|
for chunk in response.iter_content(chunk_size=1024):
|
|
if chunk:
|
|
yield chunk
|
|
|
|
|
|
class OllamaTTS(Base):
|
|
def __init__(self, key, model_name="ollama-tts", base_url="https://api.ollama.ai/v1"):
|
|
if not base_url:
|
|
base_url = "https://api.ollama.ai/v1"
|
|
self.model_name = model_name
|
|
self.base_url = base_url
|
|
self.headers = {
|
|
"Content-Type": "application/json"
|
|
}
|
|
|
|
def tts(self, text, voice="standard-voice"):
|
|
payload = {
|
|
"model": self.model_name,
|
|
"voice": voice,
|
|
"input": text
|
|
}
|
|
|
|
response = requests.post(f"{self.base_url}/audio/tts", headers=self.headers, json=payload, stream=True)
|
|
|
|
if response.status_code != 200:
|
|
raise Exception(f"**Error**: {response.status_code}, {response.text}")
|
|
|
|
for chunk in response.iter_content():
|
|
if chunk:
|
|
yield chunk
|