mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-22 06:00:00 +08:00

### What problem does this PR solve? #4543 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
370 lines
15 KiB
Python
370 lines
15 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import datetime
|
|
import json
|
|
|
|
from flask import request
|
|
from flask_login import login_required, current_user
|
|
|
|
from api.db.services.dialog_service import keyword_extraction, label_question
|
|
from rag.app.qa import rmPrefix, beAdoc
|
|
from rag.nlp import search, rag_tokenizer
|
|
from rag.settings import PAGERANK_FLD
|
|
from rag.utils import rmSpace
|
|
from api.db import LLMType, ParserType
|
|
from api.db.services.knowledgebase_service import KnowledgebaseService
|
|
from api.db.services.llm_service import LLMBundle
|
|
from api.db.services.user_service import UserTenantService
|
|
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
|
from api.db.services.document_service import DocumentService
|
|
from api import settings
|
|
from api.utils.api_utils import get_json_result
|
|
import xxhash
|
|
import re
|
|
|
|
|
|
@manager.route('/list', methods=['POST']) # noqa: F821
|
|
@login_required
|
|
@validate_request("doc_id")
|
|
def list_chunk():
|
|
req = request.json
|
|
doc_id = req["doc_id"]
|
|
page = int(req.get("page", 1))
|
|
size = int(req.get("size", 30))
|
|
question = req.get("keywords", "")
|
|
try:
|
|
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
|
|
if not tenant_id:
|
|
return get_data_error_result(message="Tenant not found!")
|
|
e, doc = DocumentService.get_by_id(doc_id)
|
|
if not e:
|
|
return get_data_error_result(message="Document not found!")
|
|
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
|
|
query = {
|
|
"doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True
|
|
}
|
|
if "available_int" in req:
|
|
query["available_int"] = int(req["available_int"])
|
|
sres = settings.retrievaler.search(query, search.index_name(tenant_id), kb_ids, highlight=True)
|
|
res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}
|
|
for id in sres.ids:
|
|
d = {
|
|
"chunk_id": id,
|
|
"content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[
|
|
id].get(
|
|
"content_with_weight", ""),
|
|
"doc_id": sres.field[id]["doc_id"],
|
|
"docnm_kwd": sres.field[id]["docnm_kwd"],
|
|
"important_kwd": sres.field[id].get("important_kwd", []),
|
|
"question_kwd": sres.field[id].get("question_kwd", []),
|
|
"image_id": sres.field[id].get("img_id", ""),
|
|
"available_int": int(sres.field[id].get("available_int", 1)),
|
|
"positions": sres.field[id].get("position_int", []),
|
|
}
|
|
assert isinstance(d["positions"], list)
|
|
assert len(d["positions"]) == 0 or (isinstance(d["positions"][0], list) and len(d["positions"][0]) == 5)
|
|
res["chunks"].append(d)
|
|
return get_json_result(data=res)
|
|
except Exception as e:
|
|
if str(e).find("not_found") > 0:
|
|
return get_json_result(data=False, message='No chunk found!',
|
|
code=settings.RetCode.DATA_ERROR)
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/get', methods=['GET']) # noqa: F821
|
|
@login_required
|
|
def get():
|
|
chunk_id = request.args["chunk_id"]
|
|
try:
|
|
tenants = UserTenantService.query(user_id=current_user.id)
|
|
if not tenants:
|
|
return get_data_error_result(message="Tenant not found!")
|
|
tenant_id = tenants[0].tenant_id
|
|
|
|
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
|
|
chunk = settings.docStoreConn.get(chunk_id, search.index_name(tenant_id), kb_ids)
|
|
if chunk is None:
|
|
return server_error_response(Exception("Chunk not found"))
|
|
k = []
|
|
for n in chunk.keys():
|
|
if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
|
|
k.append(n)
|
|
for n in k:
|
|
del chunk[n]
|
|
|
|
return get_json_result(data=chunk)
|
|
except Exception as e:
|
|
if str(e).find("NotFoundError") >= 0:
|
|
return get_json_result(data=False, message='Chunk not found!',
|
|
code=settings.RetCode.DATA_ERROR)
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/set', methods=['POST']) # noqa: F821
|
|
@login_required
|
|
@validate_request("doc_id", "chunk_id", "content_with_weight")
|
|
def set():
|
|
req = request.json
|
|
d = {
|
|
"id": req["chunk_id"],
|
|
"content_with_weight": req["content_with_weight"]}
|
|
d["content_ltks"] = rag_tokenizer.tokenize(req["content_with_weight"])
|
|
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
|
|
if "important_kwd" in req:
|
|
d["important_kwd"] = req["important_kwd"]
|
|
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_kwd"]))
|
|
if "question_kwd" in req:
|
|
d["question_kwd"] = req["question_kwd"]
|
|
d["question_tks"] = rag_tokenizer.tokenize("\n".join(req["question_kwd"]))
|
|
if "tag_kwd" in req:
|
|
d["tag_kwd"] = req["tag_kwd"]
|
|
if "tag_feas" in req:
|
|
d["tag_feas"] = req["tag_feas"]
|
|
if "available_int" in req:
|
|
d["available_int"] = req["available_int"]
|
|
|
|
try:
|
|
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
|
|
if not tenant_id:
|
|
return get_data_error_result(message="Tenant not found!")
|
|
|
|
embd_id = DocumentService.get_embd_id(req["doc_id"])
|
|
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embd_id)
|
|
|
|
e, doc = DocumentService.get_by_id(req["doc_id"])
|
|
if not e:
|
|
return get_data_error_result(message="Document not found!")
|
|
|
|
if doc.parser_id == ParserType.QA:
|
|
arr = [
|
|
t for t in re.split(
|
|
r"[\n\t]",
|
|
req["content_with_weight"]) if len(t) > 1]
|
|
q, a = rmPrefix(arr[0]), rmPrefix("\n".join(arr[1:]))
|
|
d = beAdoc(d, q, a, not any(
|
|
[rag_tokenizer.is_chinese(t) for t in q + a]))
|
|
|
|
v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d.get("question_kwd") else "\n".join(d["question_kwd"])])
|
|
v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
|
|
d["q_%d_vec" % len(v)] = v.tolist()
|
|
settings.docStoreConn.update({"id": req["chunk_id"]}, d, search.index_name(tenant_id), doc.kb_id)
|
|
return get_json_result(data=True)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/switch', methods=['POST']) # noqa: F821
|
|
@login_required
|
|
@validate_request("chunk_ids", "available_int", "doc_id")
|
|
def switch():
|
|
req = request.json
|
|
try:
|
|
e, doc = DocumentService.get_by_id(req["doc_id"])
|
|
if not e:
|
|
return get_data_error_result(message="Document not found!")
|
|
for cid in req["chunk_ids"]:
|
|
if not settings.docStoreConn.update({"id": cid},
|
|
{"available_int": int(req["available_int"])},
|
|
search.index_name(DocumentService.get_tenant_id(req["doc_id"])),
|
|
doc.kb_id):
|
|
return get_data_error_result(message="Index updating failure")
|
|
return get_json_result(data=True)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/rm', methods=['POST']) # noqa: F821
|
|
@login_required
|
|
@validate_request("chunk_ids", "doc_id")
|
|
def rm():
|
|
req = request.json
|
|
try:
|
|
e, doc = DocumentService.get_by_id(req["doc_id"])
|
|
if not e:
|
|
return get_data_error_result(message="Document not found!")
|
|
if not settings.docStoreConn.delete({"id": req["chunk_ids"]}, search.index_name(current_user.id), doc.kb_id):
|
|
return get_data_error_result(message="Index updating failure")
|
|
deleted_chunk_ids = req["chunk_ids"]
|
|
chunk_number = len(deleted_chunk_ids)
|
|
DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0)
|
|
return get_json_result(data=True)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/create', methods=['POST']) # noqa: F821
|
|
@login_required
|
|
@validate_request("doc_id", "content_with_weight")
|
|
def create():
|
|
req = request.json
|
|
chunck_id = xxhash.xxh64((req["content_with_weight"] + req["doc_id"]).encode("utf-8")).hexdigest()
|
|
d = {"id": chunck_id, "content_ltks": rag_tokenizer.tokenize(req["content_with_weight"]),
|
|
"content_with_weight": req["content_with_weight"]}
|
|
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
|
|
d["important_kwd"] = req.get("important_kwd", [])
|
|
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req.get("important_kwd", [])))
|
|
d["question_kwd"] = req.get("question_kwd", [])
|
|
d["question_tks"] = rag_tokenizer.tokenize("\n".join(req.get("question_kwd", [])))
|
|
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
|
|
d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
|
|
|
|
try:
|
|
e, doc = DocumentService.get_by_id(req["doc_id"])
|
|
if not e:
|
|
return get_data_error_result(message="Document not found!")
|
|
d["kb_id"] = [doc.kb_id]
|
|
d["docnm_kwd"] = doc.name
|
|
d["title_tks"] = rag_tokenizer.tokenize(doc.name)
|
|
d["doc_id"] = doc.id
|
|
|
|
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
|
|
if not tenant_id:
|
|
return get_data_error_result(message="Tenant not found!")
|
|
|
|
e, kb = KnowledgebaseService.get_by_id(doc.kb_id)
|
|
if not e:
|
|
return get_data_error_result(message="Knowledgebase not found!")
|
|
if kb.pagerank:
|
|
d[PAGERANK_FLD] = kb.pagerank
|
|
|
|
embd_id = DocumentService.get_embd_id(req["doc_id"])
|
|
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING.value, embd_id)
|
|
|
|
v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d["question_kwd"] else "\n".join(d["question_kwd"])])
|
|
v = 0.1 * v[0] + 0.9 * v[1]
|
|
d["q_%d_vec" % len(v)] = v.tolist()
|
|
settings.docStoreConn.insert([d], search.index_name(tenant_id), doc.kb_id)
|
|
|
|
DocumentService.increment_chunk_num(
|
|
doc.id, doc.kb_id, c, 1, 0)
|
|
return get_json_result(data={"chunk_id": chunck_id})
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/retrieval_test', methods=['POST']) # noqa: F821
|
|
@login_required
|
|
@validate_request("kb_id", "question")
|
|
def retrieval_test():
|
|
req = request.json
|
|
page = int(req.get("page", 1))
|
|
size = int(req.get("size", 30))
|
|
question = req["question"]
|
|
kb_ids = req["kb_id"]
|
|
if isinstance(kb_ids, str):
|
|
kb_ids = [kb_ids]
|
|
doc_ids = req.get("doc_ids", [])
|
|
similarity_threshold = float(req.get("similarity_threshold", 0.0))
|
|
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
|
|
use_kg = req.get("use_kg", False)
|
|
top = int(req.get("top_k", 1024))
|
|
tenant_ids = []
|
|
|
|
try:
|
|
tenants = UserTenantService.query(user_id=current_user.id)
|
|
for kb_id in kb_ids:
|
|
for tenant in tenants:
|
|
if KnowledgebaseService.query(
|
|
tenant_id=tenant.tenant_id, id=kb_id):
|
|
tenant_ids.append(tenant.tenant_id)
|
|
break
|
|
else:
|
|
return get_json_result(
|
|
data=False, message='Only owner of knowledgebase authorized for this operation.',
|
|
code=settings.RetCode.OPERATING_ERROR)
|
|
|
|
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
|
|
if not e:
|
|
return get_data_error_result(message="Knowledgebase not found!")
|
|
|
|
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
|
|
|
|
rerank_mdl = None
|
|
if req.get("rerank_id"):
|
|
rerank_mdl = LLMBundle(kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])
|
|
|
|
if req.get("keyword", False):
|
|
chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
|
|
question += keyword_extraction(chat_mdl, question)
|
|
|
|
labels = label_question(question, [kb])
|
|
ranks = settings.retrievaler.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
|
|
similarity_threshold, vector_similarity_weight, top,
|
|
doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"),
|
|
rank_feature=labels
|
|
)
|
|
if use_kg:
|
|
ck = settings.kg_retrievaler.retrieval(question,
|
|
tenant_ids,
|
|
kb_ids,
|
|
embd_mdl,
|
|
LLMBundle(kb.tenant_id, LLMType.CHAT))
|
|
if ck["content_with_weight"]:
|
|
ranks["chunks"].insert(0, ck)
|
|
|
|
for c in ranks["chunks"]:
|
|
c.pop("vector", None)
|
|
ranks["labels"] = labels
|
|
|
|
return get_json_result(data=ranks)
|
|
except Exception as e:
|
|
if str(e).find("not_found") > 0:
|
|
return get_json_result(data=False, message='No chunk found! Check the chunk status please!',
|
|
code=settings.RetCode.DATA_ERROR)
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/knowledge_graph', methods=['GET']) # noqa: F821
|
|
@login_required
|
|
def knowledge_graph():
|
|
doc_id = request.args["doc_id"]
|
|
tenant_id = DocumentService.get_tenant_id(doc_id)
|
|
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
|
|
req = {
|
|
"doc_ids": [doc_id],
|
|
"knowledge_graph_kwd": ["graph", "mind_map"]
|
|
}
|
|
sres = settings.retrievaler.search(req, search.index_name(tenant_id), kb_ids)
|
|
obj = {"graph": {}, "mind_map": {}}
|
|
for id in sres.ids[:2]:
|
|
ty = sres.field[id]["knowledge_graph_kwd"]
|
|
try:
|
|
content_json = json.loads(sres.field[id]["content_with_weight"])
|
|
except Exception:
|
|
continue
|
|
|
|
if ty == 'mind_map':
|
|
node_dict = {}
|
|
|
|
def repeat_deal(content_json, node_dict):
|
|
if 'id' in content_json:
|
|
if content_json['id'] in node_dict:
|
|
node_name = content_json['id']
|
|
content_json['id'] += f"({node_dict[content_json['id']]})"
|
|
node_dict[node_name] += 1
|
|
else:
|
|
node_dict[content_json['id']] = 1
|
|
if 'children' in content_json and content_json['children']:
|
|
for item in content_json['children']:
|
|
repeat_deal(item, node_dict)
|
|
|
|
repeat_deal(content_json, node_dict)
|
|
|
|
obj[ty] = content_json
|
|
|
|
return get_json_result(data=obj)
|