mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-21 05:29:57 +08:00

### What problem does this PR solve? Optimize task broker and executor for reduce memory usage and deployment complexity. ### Type of change - [x] Performance Improvement - [x] Refactoring ### Change Log - Enhance redis utils for message queue(use stream) - Modify task broker logic via message queue (1.get parse event from message queue 2.use ThreadPoolExecutor async executor ) - Modify the table column name of document and task (process_duation -> process_duration maybe just a spelling mistake) - Reformat some code style(just what i see) - Add requirement_dev.txt for developer - Add redis container on docker compose --------- Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
171 lines
6.2 KiB
Python
171 lines
6.2 KiB
Python
# -*- coding: utf-8 -*-
|
||
|
||
import json
|
||
import math
|
||
import re
|
||
import logging
|
||
import copy
|
||
from elasticsearch_dsl import Q
|
||
|
||
from rag.nlp import rag_tokenizer, term_weight, synonym
|
||
|
||
class EsQueryer:
|
||
def __init__(self, es):
|
||
self.tw = term_weight.Dealer()
|
||
self.es = es
|
||
self.syn = synonym.Dealer()
|
||
self.flds = ["ask_tks^10", "ask_small_tks"]
|
||
|
||
@staticmethod
|
||
def subSpecialChar(line):
|
||
return re.sub(r"([:\{\}/\[\]\-\*\"\(\)\|~\^])", r"\\\1", line).strip()
|
||
|
||
@staticmethod
|
||
def isChinese(line):
|
||
arr = re.split(r"[ \t]+", line)
|
||
if len(arr) <= 3:
|
||
return True
|
||
e = 0
|
||
for t in arr:
|
||
if not re.match(r"[a-zA-Z]+$", t):
|
||
e += 1
|
||
return e * 1. / len(arr) >= 0.7
|
||
|
||
@staticmethod
|
||
def rmWWW(txt):
|
||
patts = [
|
||
(r"是*(什么样的|哪家|一下|那家|啥样|咋样了|什么时候|何时|何地|何人|是否|是不是|多少|哪里|怎么|哪儿|怎么样|如何|哪些|是啥|啥是|啊|吗|呢|吧|咋|什么|有没有|呀)是*", ""),
|
||
(r"(^| )(what|who|how|which|where|why)('re|'s)? ", " "),
|
||
(r"(^| )('s|'re|is|are|were|was|do|does|did|don't|doesn't|didn't|has|have|be|there|you|me|your|my|mine|just|please|may|i|should|would|wouldn't|will|won't|done|go|for|with|so|the|a|an|by|i'm|it's|he's|she's|they|they're|you're|as|by|on|in|at|up|out|down)", " ")
|
||
]
|
||
for r, p in patts:
|
||
txt = re.sub(r, p, txt, flags=re.IGNORECASE)
|
||
return txt
|
||
|
||
def question(self, txt, tbl="qa", min_match="60%"):
|
||
txt = re.sub(
|
||
r"[ \r\n\t,,。??/`!!&]+",
|
||
" ",
|
||
rag_tokenizer.tradi2simp(
|
||
rag_tokenizer.strQ2B(
|
||
txt.lower()))).strip()
|
||
txt = EsQueryer.rmWWW(txt)
|
||
|
||
if not self.isChinese(txt):
|
||
tks = rag_tokenizer.tokenize(txt).split(" ")
|
||
q = copy.deepcopy(tks)
|
||
for i in range(1, len(tks)):
|
||
q.append("\"%s %s\"^2" % (tks[i - 1], tks[i]))
|
||
if not q:
|
||
q.append(txt)
|
||
return Q("bool",
|
||
must=Q("query_string", fields=self.flds,
|
||
type="best_fields", query=" ".join(q),
|
||
boost=1)#, minimum_should_match=min_match)
|
||
), tks
|
||
|
||
def need_fine_grained_tokenize(tk):
|
||
if len(tk) < 4:
|
||
return False
|
||
if re.match(r"[0-9a-z\.\+#_\*-]+$", tk):
|
||
return False
|
||
return True
|
||
|
||
qs, keywords = [], []
|
||
for tt in self.tw.split(txt)[:256]: # .split(" "):
|
||
if not tt:
|
||
continue
|
||
twts = self.tw.weights([tt])
|
||
syns = self.syn.lookup(tt)
|
||
logging.info(json.dumps(twts, ensure_ascii=False))
|
||
tms = []
|
||
for tk, w in sorted(twts, key=lambda x: x[1] * -1):
|
||
sm = rag_tokenizer.fine_grained_tokenize(tk).split(" ") if need_fine_grained_tokenize(tk) else []
|
||
sm = [
|
||
re.sub(
|
||
r"[ ,\./;'\[\]\\`~!@#$%\^&\*\(\)=\+_<>\?:\"\{\}\|,。;‘’【】、!¥……()——《》?:“”-]+",
|
||
"",
|
||
m) for m in sm]
|
||
sm = [EsQueryer.subSpecialChar(m) for m in sm if len(m) > 1]
|
||
sm = [m for m in sm if len(m) > 1]
|
||
if len(sm) < 2:
|
||
sm = []
|
||
|
||
keywords.append(re.sub(r"[ \\\"']+", "", tk))
|
||
|
||
tk_syns = self.syn.lookup(tk)
|
||
tk = EsQueryer.subSpecialChar(tk)
|
||
if tk.find(" ") > 0:
|
||
tk = "\"%s\"" % tk
|
||
if tk_syns:
|
||
tk = f"({tk} %s)" % " ".join(tk_syns)
|
||
if sm:
|
||
tk = f"{tk} OR \"%s\" OR (\"%s\"~2)^0.5" % (
|
||
" ".join(sm), " ".join(sm))
|
||
tms.append((tk, w))
|
||
|
||
tms = " ".join([f"({t})^{w}" for t, w in tms])
|
||
|
||
if len(twts) > 1:
|
||
tms += f" (\"%s\"~4)^1.5" % (" ".join([t for t, _ in twts]))
|
||
if re.match(r"[0-9a-z ]+$", tt):
|
||
tms = f"(\"{tt}\" OR \"%s\")" % rag_tokenizer.tokenize(tt)
|
||
|
||
syns = " OR ".join(
|
||
["\"%s\"^0.7" % EsQueryer.subSpecialChar(rag_tokenizer.tokenize(s)) for s in syns])
|
||
if syns:
|
||
tms = f"({tms})^5 OR ({syns})^0.7"
|
||
|
||
qs.append(tms)
|
||
|
||
flds = copy.deepcopy(self.flds)
|
||
mst = []
|
||
if qs:
|
||
mst.append(
|
||
Q("query_string", fields=flds, type="best_fields",
|
||
query=" OR ".join([f"({t})" for t in qs if t]), boost=1, minimum_should_match=min_match)
|
||
)
|
||
|
||
return Q("bool",
|
||
must=mst,
|
||
), keywords
|
||
|
||
def hybrid_similarity(self, avec, bvecs, atks, btkss, tkweight=0.3,
|
||
vtweight=0.7):
|
||
from sklearn.metrics.pairwise import cosine_similarity as CosineSimilarity
|
||
import numpy as np
|
||
sims = CosineSimilarity([avec], bvecs)
|
||
|
||
def toDict(tks):
|
||
d = {}
|
||
if isinstance(tks, str):
|
||
tks = tks.split(" ")
|
||
for t, c in self.tw.weights(tks):
|
||
if t not in d:
|
||
d[t] = 0
|
||
d[t] += c
|
||
return d
|
||
|
||
atks = toDict(atks)
|
||
btkss = [toDict(tks) for tks in btkss]
|
||
tksim = [self.similarity(atks, btks) for btks in btkss]
|
||
return np.array(sims[0]) * vtweight + \
|
||
np.array(tksim) * tkweight, tksim, sims[0]
|
||
|
||
def similarity(self, qtwt, dtwt):
|
||
if isinstance(dtwt, type("")):
|
||
dtwt = {t: w for t, w in self.tw.weights(self.tw.split(dtwt))}
|
||
if isinstance(qtwt, type("")):
|
||
qtwt = {t: w for t, w in self.tw.weights(self.tw.split(qtwt))}
|
||
s = 1e-9
|
||
for k, v in qtwt.items():
|
||
if k in dtwt:
|
||
s += v # * dtwt[k]
|
||
q = 1e-9
|
||
for k, v in qtwt.items():
|
||
q += v # * v
|
||
#d = 1e-9
|
||
# for k, v in dtwt.items():
|
||
# d += v * v
|
||
return s / q / max(1, math.sqrt(math.log10(max(len(qtwt.keys()), len(dtwt.keys())))))# math.sqrt(q) / math.sqrt(d)
|