mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-22 22:20:07 +08:00

### What problem does this PR solve? #5905 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
68 lines
2.3 KiB
Python
68 lines
2.3 KiB
Python
#
|
|
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import logging
|
|
from tavily import TavilyClient
|
|
from api.utils import get_uuid
|
|
from rag.nlp import rag_tokenizer
|
|
|
|
|
|
class Tavily:
|
|
def __init__(self, api_key: str):
|
|
self.tavily_client = TavilyClient(api_key=api_key)
|
|
|
|
def search(self, query):
|
|
try:
|
|
response = self.tavily_client.search(
|
|
query=query,
|
|
search_depth="advanced",
|
|
max_results=6
|
|
)
|
|
return [{"url": res["url"], "title": res["title"], "content": res["content"], "score": res["score"]} for res in response["results"]]
|
|
except Exception as e:
|
|
logging.exception(e)
|
|
|
|
return []
|
|
|
|
def retrieve_chunks(self, question):
|
|
chunks = []
|
|
aggs = []
|
|
logging.info("[Tavily]Q: " + question)
|
|
for r in self.search(question):
|
|
id = get_uuid()
|
|
chunks.append({
|
|
"chunk_id": id,
|
|
"content_ltks": rag_tokenizer.tokenize(r["content"]),
|
|
"content_with_weight": r["content"],
|
|
"doc_id": id,
|
|
"docnm_kwd": r["title"],
|
|
"kb_id": [],
|
|
"important_kwd": [],
|
|
"image_id": "",
|
|
"similarity": r["score"],
|
|
"vector_similarity": 1.,
|
|
"term_similarity": 0,
|
|
"vector": [],
|
|
"positions": [],
|
|
"url": r["url"]
|
|
})
|
|
aggs.append({
|
|
"doc_name": r["title"],
|
|
"doc_id": id,
|
|
"count": 1,
|
|
"url": r["url"]
|
|
})
|
|
logging.info("[Tavily]R: "+r["content"][:128]+"...")
|
|
return {"chunks": chunks, "doc_aggs": aggs} |