mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-06-04 11:24:00 +08:00

### What problem does this PR solve? When the PDF uses vector fonts, the rendered text in the captured page image often has missing strokes, leading to numerous OCR errors and incorrect characters. Similar issues also occur in the extracted chart images. **Before**  **After**  You can use the following document for testing. [Casio说明书.pdf](https://github.com/user-attachments/files/20119690/Casio.pdf) ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue) - [ ] New Feature (non-breaking change which adds functionality) - [ ] Documentation Update - [ ] Refactoring - [ ] Performance Improvement - [ ] Other (please describe): Co-authored-by: liuzhenghua-jk <liuzhenghua-jk@360shuke.com>
1324 lines
52 KiB
Python
1324 lines
52 KiB
Python
#
|
||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
#
|
||
|
||
import logging
|
||
import os
|
||
import random
|
||
import re
|
||
import sys
|
||
import threading
|
||
from copy import deepcopy
|
||
from io import BytesIO
|
||
from timeit import default_timer as timer
|
||
|
||
import numpy as np
|
||
import pdfplumber
|
||
import trio
|
||
import xgboost as xgb
|
||
from huggingface_hub import snapshot_download
|
||
from PIL import Image
|
||
from pypdf import PdfReader as pdf2_read
|
||
|
||
from api import settings
|
||
from api.utils.file_utils import get_project_base_directory
|
||
from deepdoc.vision import OCR, LayoutRecognizer, Recognizer, TableStructureRecognizer
|
||
from rag.app.picture import vision_llm_chunk as picture_vision_llm_chunk
|
||
from rag.nlp import rag_tokenizer
|
||
from rag.prompts import vision_llm_describe_prompt
|
||
from rag.settings import PARALLEL_DEVICES
|
||
|
||
LOCK_KEY_pdfplumber = "global_shared_lock_pdfplumber"
|
||
if LOCK_KEY_pdfplumber not in sys.modules:
|
||
sys.modules[LOCK_KEY_pdfplumber] = threading.Lock()
|
||
|
||
|
||
class RAGFlowPdfParser:
|
||
def __init__(self, **kwargs):
|
||
"""
|
||
If you have trouble downloading HuggingFace models, -_^ this might help!!
|
||
|
||
For Linux:
|
||
export HF_ENDPOINT=https://hf-mirror.com
|
||
|
||
For Windows:
|
||
Good luck
|
||
^_-
|
||
|
||
"""
|
||
|
||
self.ocr = OCR()
|
||
self.parallel_limiter = None
|
||
if PARALLEL_DEVICES is not None and PARALLEL_DEVICES > 1:
|
||
self.parallel_limiter = [trio.CapacityLimiter(1) for _ in range(PARALLEL_DEVICES)]
|
||
|
||
if hasattr(self, "model_speciess"):
|
||
self.layouter = LayoutRecognizer("layout." + self.model_speciess)
|
||
else:
|
||
self.layouter = LayoutRecognizer("layout")
|
||
self.tbl_det = TableStructureRecognizer()
|
||
|
||
self.updown_cnt_mdl = xgb.Booster()
|
||
if not settings.LIGHTEN:
|
||
try:
|
||
import torch.cuda
|
||
if torch.cuda.is_available():
|
||
self.updown_cnt_mdl.set_param({"device": "cuda"})
|
||
except Exception:
|
||
logging.exception("RAGFlowPdfParser __init__")
|
||
try:
|
||
model_dir = os.path.join(
|
||
get_project_base_directory(),
|
||
"rag/res/deepdoc")
|
||
self.updown_cnt_mdl.load_model(os.path.join(
|
||
model_dir, "updown_concat_xgb.model"))
|
||
except Exception:
|
||
model_dir = snapshot_download(
|
||
repo_id="InfiniFlow/text_concat_xgb_v1.0",
|
||
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
|
||
local_dir_use_symlinks=False)
|
||
self.updown_cnt_mdl.load_model(os.path.join(
|
||
model_dir, "updown_concat_xgb.model"))
|
||
|
||
self.page_from = 0
|
||
|
||
def __char_width(self, c):
|
||
return (c["x1"] - c["x0"]) // max(len(c["text"]), 1)
|
||
|
||
def __height(self, c):
|
||
return c["bottom"] - c["top"]
|
||
|
||
def _x_dis(self, a, b):
|
||
return min(abs(a["x1"] - b["x0"]), abs(a["x0"] - b["x1"]),
|
||
abs(a["x0"] + a["x1"] - b["x0"] - b["x1"]) / 2)
|
||
|
||
def _y_dis(
|
||
self, a, b):
|
||
return (
|
||
b["top"] + b["bottom"] - a["top"] - a["bottom"]) / 2
|
||
|
||
def _match_proj(self, b):
|
||
proj_patt = [
|
||
r"第[零一二三四五六七八九十百]+章",
|
||
r"第[零一二三四五六七八九十百]+[条节]",
|
||
r"[零一二三四五六七八九十百]+[、是 ]",
|
||
r"[\((][零一二三四五六七八九十百]+[)\)]",
|
||
r"[\((][0-9]+[)\)]",
|
||
r"[0-9]+(、|\.[ ]|)|\.[^0-9./a-zA-Z_%><-]{4,})",
|
||
r"[0-9]+\.[0-9.]+(、|\.[ ])",
|
||
r"[⚫•➢①② ]",
|
||
]
|
||
return any([re.match(p, b["text"]) for p in proj_patt])
|
||
|
||
def _updown_concat_features(self, up, down):
|
||
w = max(self.__char_width(up), self.__char_width(down))
|
||
h = max(self.__height(up), self.__height(down))
|
||
y_dis = self._y_dis(up, down)
|
||
LEN = 6
|
||
tks_down = rag_tokenizer.tokenize(down["text"][:LEN]).split()
|
||
tks_up = rag_tokenizer.tokenize(up["text"][-LEN:]).split()
|
||
tks_all = up["text"][-LEN:].strip() \
|
||
+ (" " if re.match(r"[a-zA-Z0-9]+",
|
||
up["text"][-1] + down["text"][0]) else "") \
|
||
+ down["text"][:LEN].strip()
|
||
tks_all = rag_tokenizer.tokenize(tks_all).split()
|
||
fea = [
|
||
up.get("R", -1) == down.get("R", -1),
|
||
y_dis / h,
|
||
down["page_number"] - up["page_number"],
|
||
up["layout_type"] == down["layout_type"],
|
||
up["layout_type"] == "text",
|
||
down["layout_type"] == "text",
|
||
up["layout_type"] == "table",
|
||
down["layout_type"] == "table",
|
||
True if re.search(
|
||
r"([。?!;!?;+))]|[a-z]\.)$",
|
||
up["text"]) else False,
|
||
True if re.search(r"[,:‘“、0-9(+-]$", up["text"]) else False,
|
||
True if re.search(
|
||
r"(^.?[/,?;:\],。;:’”?!》】)-])",
|
||
down["text"]) else False,
|
||
True if re.match(r"[\((][^\(\)()]+[)\)]$", up["text"]) else False,
|
||
True if re.search(r"[,,][^。.]+$", up["text"]) else False,
|
||
True if re.search(r"[,,][^。.]+$", up["text"]) else False,
|
||
True if re.search(r"[\((][^\))]+$", up["text"])
|
||
and re.search(r"[\))]", down["text"]) else False,
|
||
self._match_proj(down),
|
||
True if re.match(r"[A-Z]", down["text"]) else False,
|
||
True if re.match(r"[A-Z]", up["text"][-1]) else False,
|
||
True if re.match(r"[a-z0-9]", up["text"][-1]) else False,
|
||
True if re.match(r"[0-9.%,-]+$", down["text"]) else False,
|
||
up["text"].strip()[-2:] == down["text"].strip()[-2:] if len(up["text"].strip()
|
||
) > 1 and len(
|
||
down["text"].strip()) > 1 else False,
|
||
up["x0"] > down["x1"],
|
||
abs(self.__height(up) - self.__height(down)) / min(self.__height(up),
|
||
self.__height(down)),
|
||
self._x_dis(up, down) / max(w, 0.000001),
|
||
(len(up["text"]) - len(down["text"])) /
|
||
max(len(up["text"]), len(down["text"])),
|
||
len(tks_all) - len(tks_up) - len(tks_down),
|
||
len(tks_down) - len(tks_up),
|
||
tks_down[-1] == tks_up[-1] if tks_down and tks_up else False,
|
||
max(down["in_row"], up["in_row"]),
|
||
abs(down["in_row"] - up["in_row"]),
|
||
len(tks_down) == 1 and rag_tokenizer.tag(tks_down[0]).find("n") >= 0,
|
||
len(tks_up) == 1 and rag_tokenizer.tag(tks_up[0]).find("n") >= 0
|
||
]
|
||
return fea
|
||
|
||
@staticmethod
|
||
def sort_X_by_page(arr, threashold):
|
||
# sort using y1 first and then x1
|
||
arr = sorted(arr, key=lambda r: (r["page_number"], r["x0"], r["top"]))
|
||
for i in range(len(arr) - 1):
|
||
for j in range(i, -1, -1):
|
||
# restore the order using th
|
||
if abs(arr[j + 1]["x0"] - arr[j]["x0"]) < threashold \
|
||
and arr[j + 1]["top"] < arr[j]["top"] \
|
||
and arr[j + 1]["page_number"] == arr[j]["page_number"]:
|
||
tmp = arr[j]
|
||
arr[j] = arr[j + 1]
|
||
arr[j + 1] = tmp
|
||
return arr
|
||
|
||
def _has_color(self, o):
|
||
if o.get("ncs", "") == "DeviceGray":
|
||
if o["stroking_color"] and o["stroking_color"][0] == 1 and o["non_stroking_color"] and \
|
||
o["non_stroking_color"][0] == 1:
|
||
if re.match(r"[a-zT_\[\]\(\)-]+", o.get("text", "")):
|
||
return False
|
||
return True
|
||
|
||
def _table_transformer_job(self, ZM):
|
||
logging.debug("Table processing...")
|
||
imgs, pos = [], []
|
||
tbcnt = [0]
|
||
MARGIN = 10
|
||
self.tb_cpns = []
|
||
assert len(self.page_layout) == len(self.page_images)
|
||
for p, tbls in enumerate(self.page_layout): # for page
|
||
tbls = [f for f in tbls if f["type"] == "table"]
|
||
tbcnt.append(len(tbls))
|
||
if not tbls:
|
||
continue
|
||
for tb in tbls: # for table
|
||
left, top, right, bott = tb["x0"] - MARGIN, tb["top"] - MARGIN, \
|
||
tb["x1"] + MARGIN, tb["bottom"] + MARGIN
|
||
left *= ZM
|
||
top *= ZM
|
||
right *= ZM
|
||
bott *= ZM
|
||
pos.append((left, top))
|
||
imgs.append(self.page_images[p].crop((left, top, right, bott)))
|
||
|
||
assert len(self.page_images) == len(tbcnt) - 1
|
||
if not imgs:
|
||
return
|
||
recos = self.tbl_det(imgs)
|
||
tbcnt = np.cumsum(tbcnt)
|
||
for i in range(len(tbcnt) - 1): # for page
|
||
pg = []
|
||
for j, tb_items in enumerate(
|
||
recos[tbcnt[i]: tbcnt[i + 1]]): # for table
|
||
poss = pos[tbcnt[i]: tbcnt[i + 1]]
|
||
for it in tb_items: # for table components
|
||
it["x0"] = (it["x0"] + poss[j][0])
|
||
it["x1"] = (it["x1"] + poss[j][0])
|
||
it["top"] = (it["top"] + poss[j][1])
|
||
it["bottom"] = (it["bottom"] + poss[j][1])
|
||
for n in ["x0", "x1", "top", "bottom"]:
|
||
it[n] /= ZM
|
||
it["top"] += self.page_cum_height[i]
|
||
it["bottom"] += self.page_cum_height[i]
|
||
it["pn"] = i
|
||
it["layoutno"] = j
|
||
pg.append(it)
|
||
self.tb_cpns.extend(pg)
|
||
|
||
def gather(kwd, fzy=10, ption=0.6):
|
||
eles = Recognizer.sort_Y_firstly(
|
||
[r for r in self.tb_cpns if re.match(kwd, r["label"])], fzy)
|
||
eles = Recognizer.layouts_cleanup(self.boxes, eles, 5, ption)
|
||
return Recognizer.sort_Y_firstly(eles, 0)
|
||
|
||
# add R,H,C,SP tag to boxes within table layout
|
||
headers = gather(r".*header$")
|
||
rows = gather(r".* (row|header)")
|
||
spans = gather(r".*spanning")
|
||
clmns = sorted([r for r in self.tb_cpns if re.match(
|
||
r"table column$", r["label"])], key=lambda x: (x["pn"], x["layoutno"], x["x0"]))
|
||
clmns = Recognizer.layouts_cleanup(self.boxes, clmns, 5, 0.5)
|
||
for b in self.boxes:
|
||
if b.get("layout_type", "") != "table":
|
||
continue
|
||
ii = Recognizer.find_overlapped_with_threashold(b, rows, thr=0.3)
|
||
if ii is not None:
|
||
b["R"] = ii
|
||
b["R_top"] = rows[ii]["top"]
|
||
b["R_bott"] = rows[ii]["bottom"]
|
||
|
||
ii = Recognizer.find_overlapped_with_threashold(
|
||
b, headers, thr=0.3)
|
||
if ii is not None:
|
||
b["H_top"] = headers[ii]["top"]
|
||
b["H_bott"] = headers[ii]["bottom"]
|
||
b["H_left"] = headers[ii]["x0"]
|
||
b["H_right"] = headers[ii]["x1"]
|
||
b["H"] = ii
|
||
|
||
ii = Recognizer.find_horizontally_tightest_fit(b, clmns)
|
||
if ii is not None:
|
||
b["C"] = ii
|
||
b["C_left"] = clmns[ii]["x0"]
|
||
b["C_right"] = clmns[ii]["x1"]
|
||
|
||
ii = Recognizer.find_overlapped_with_threashold(b, spans, thr=0.3)
|
||
if ii is not None:
|
||
b["H_top"] = spans[ii]["top"]
|
||
b["H_bott"] = spans[ii]["bottom"]
|
||
b["H_left"] = spans[ii]["x0"]
|
||
b["H_right"] = spans[ii]["x1"]
|
||
b["SP"] = ii
|
||
|
||
def __ocr(self, pagenum, img, chars, ZM=3, device_id: int | None = None):
|
||
start = timer()
|
||
bxs = self.ocr.detect(np.array(img), device_id)
|
||
logging.info(f"__ocr detecting boxes of a image cost ({timer() - start}s)")
|
||
|
||
start = timer()
|
||
if not bxs:
|
||
self.boxes.append([])
|
||
return
|
||
bxs = [(line[0], line[1][0]) for line in bxs]
|
||
bxs = Recognizer.sort_Y_firstly(
|
||
[{"x0": b[0][0] / ZM, "x1": b[1][0] / ZM,
|
||
"top": b[0][1] / ZM, "text": "", "txt": t,
|
||
"bottom": b[-1][1] / ZM,
|
||
"chars": [],
|
||
"page_number": pagenum} for b, t in bxs if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]],
|
||
self.mean_height[pagenum-1] / 3
|
||
)
|
||
|
||
# merge chars in the same rect
|
||
for c in chars:
|
||
ii = Recognizer.find_overlapped(c, bxs)
|
||
if ii is None:
|
||
self.lefted_chars.append(c)
|
||
continue
|
||
ch = c["bottom"] - c["top"]
|
||
bh = bxs[ii]["bottom"] - bxs[ii]["top"]
|
||
if abs(ch - bh) / max(ch, bh) >= 0.7 and c["text"] != ' ':
|
||
self.lefted_chars.append(c)
|
||
continue
|
||
bxs[ii]["chars"].append(c)
|
||
|
||
for b in bxs:
|
||
if not b["chars"]:
|
||
del b["chars"]
|
||
continue
|
||
m_ht = np.mean([c["height"] for c in b["chars"]])
|
||
for c in Recognizer.sort_Y_firstly(b["chars"], m_ht):
|
||
if c["text"] == " " and b["text"]:
|
||
if re.match(r"[0-9a-zA-Zа-яА-Я,.?;:!%%]", b["text"][-1]):
|
||
b["text"] += " "
|
||
else:
|
||
b["text"] += c["text"]
|
||
del b["chars"]
|
||
|
||
logging.info(f"__ocr sorting {len(chars)} chars cost {timer() - start}s")
|
||
start = timer()
|
||
boxes_to_reg = []
|
||
img_np = np.array(img)
|
||
for b in bxs:
|
||
if not b["text"]:
|
||
left, right, top, bott = b["x0"] * ZM, b["x1"] * \
|
||
ZM, b["top"] * ZM, b["bottom"] * ZM
|
||
b["box_image"] = self.ocr.get_rotate_crop_image(img_np, np.array([[left, top], [right, top], [right, bott], [left, bott]], dtype=np.float32))
|
||
boxes_to_reg.append(b)
|
||
del b["txt"]
|
||
texts = self.ocr.recognize_batch([b["box_image"] for b in boxes_to_reg], device_id)
|
||
for i in range(len(boxes_to_reg)):
|
||
boxes_to_reg[i]["text"] = texts[i]
|
||
del boxes_to_reg[i]["box_image"]
|
||
logging.info(f"__ocr recognize {len(bxs)} boxes cost {timer() - start}s")
|
||
bxs = [b for b in bxs if b["text"]]
|
||
if self.mean_height[pagenum-1] == 0:
|
||
self.mean_height[pagenum-1] = np.median([b["bottom"] - b["top"]
|
||
for b in bxs])
|
||
self.boxes.append(bxs)
|
||
|
||
def _layouts_rec(self, ZM, drop=True):
|
||
assert len(self.page_images) == len(self.boxes)
|
||
self.boxes, self.page_layout = self.layouter(
|
||
self.page_images, self.boxes, ZM, drop=drop)
|
||
# cumlative Y
|
||
for i in range(len(self.boxes)):
|
||
self.boxes[i]["top"] += \
|
||
self.page_cum_height[self.boxes[i]["page_number"] - 1]
|
||
self.boxes[i]["bottom"] += \
|
||
self.page_cum_height[self.boxes[i]["page_number"] - 1]
|
||
|
||
def _text_merge(self):
|
||
# merge adjusted boxes
|
||
bxs = self.boxes
|
||
|
||
def end_with(b, txt):
|
||
txt = txt.strip()
|
||
tt = b.get("text", "").strip()
|
||
return tt and tt.find(txt) == len(tt) - len(txt)
|
||
|
||
def start_with(b, txts):
|
||
tt = b.get("text", "").strip()
|
||
return tt and any([tt.find(t.strip()) == 0 for t in txts])
|
||
|
||
# horizontally merge adjacent box with the same layout
|
||
i = 0
|
||
while i < len(bxs) - 1:
|
||
b = bxs[i]
|
||
b_ = bxs[i + 1]
|
||
if b.get("layoutno", "0") != b_.get("layoutno", "1") or b.get("layout_type", "") in ["table", "figure",
|
||
"equation"]:
|
||
i += 1
|
||
continue
|
||
if abs(self._y_dis(b, b_)
|
||
) < self.mean_height[bxs[i]["page_number"] - 1] / 3:
|
||
# merge
|
||
bxs[i]["x1"] = b_["x1"]
|
||
bxs[i]["top"] = (b["top"] + b_["top"]) / 2
|
||
bxs[i]["bottom"] = (b["bottom"] + b_["bottom"]) / 2
|
||
bxs[i]["text"] += b_["text"]
|
||
bxs.pop(i + 1)
|
||
continue
|
||
i += 1
|
||
continue
|
||
|
||
dis_thr = 1
|
||
dis = b["x1"] - b_["x0"]
|
||
if b.get("layout_type", "") != "text" or b_.get(
|
||
"layout_type", "") != "text":
|
||
if end_with(b, ",") or start_with(b_, "(,"):
|
||
dis_thr = -8
|
||
else:
|
||
i += 1
|
||
continue
|
||
|
||
if abs(self._y_dis(b, b_)) < self.mean_height[bxs[i]["page_number"] - 1] / 5 \
|
||
and dis >= dis_thr and b["x1"] < b_["x1"]:
|
||
# merge
|
||
bxs[i]["x1"] = b_["x1"]
|
||
bxs[i]["top"] = (b["top"] + b_["top"]) / 2
|
||
bxs[i]["bottom"] = (b["bottom"] + b_["bottom"]) / 2
|
||
bxs[i]["text"] += b_["text"]
|
||
bxs.pop(i + 1)
|
||
continue
|
||
i += 1
|
||
self.boxes = bxs
|
||
|
||
def _naive_vertical_merge(self):
|
||
bxs = Recognizer.sort_Y_firstly(
|
||
self.boxes, np.median(
|
||
self.mean_height) / 3)
|
||
i = 0
|
||
while i + 1 < len(bxs):
|
||
b = bxs[i]
|
||
b_ = bxs[i + 1]
|
||
if b["page_number"] < b_["page_number"] and re.match(
|
||
r"[0-9 •一—-]+$", b["text"]):
|
||
bxs.pop(i)
|
||
continue
|
||
if not b["text"].strip():
|
||
bxs.pop(i)
|
||
continue
|
||
concatting_feats = [
|
||
b["text"].strip()[-1] in ",;:'\",、‘“;:-",
|
||
len(b["text"].strip()) > 1 and b["text"].strip(
|
||
)[-2] in ",;:'\",‘“、;:",
|
||
b_["text"].strip() and b_["text"].strip()[0] in "。;?!?”)),,、:",
|
||
]
|
||
# features for not concating
|
||
feats = [
|
||
b.get("layoutno", 0) != b_.get("layoutno", 0),
|
||
b["text"].strip()[-1] in "。?!?",
|
||
self.is_english and b["text"].strip()[-1] in ".!?",
|
||
b["page_number"] == b_["page_number"] and b_["top"] -
|
||
b["bottom"] > self.mean_height[b["page_number"] - 1] * 1.5,
|
||
b["page_number"] < b_["page_number"] and abs(
|
||
b["x0"] - b_["x0"]) > self.mean_width[b["page_number"] - 1] * 4,
|
||
]
|
||
# split features
|
||
detach_feats = [b["x1"] < b_["x0"],
|
||
b["x0"] > b_["x1"]]
|
||
if (any(feats) and not any(concatting_feats)) or any(detach_feats):
|
||
logging.debug("{} {} {} {}".format(
|
||
b["text"],
|
||
b_["text"],
|
||
any(feats),
|
||
any(concatting_feats),
|
||
))
|
||
i += 1
|
||
continue
|
||
# merge up and down
|
||
b["bottom"] = b_["bottom"]
|
||
b["text"] += b_["text"]
|
||
b["x0"] = min(b["x0"], b_["x0"])
|
||
b["x1"] = max(b["x1"], b_["x1"])
|
||
bxs.pop(i + 1)
|
||
self.boxes = bxs
|
||
|
||
def _concat_downward(self, concat_between_pages=True):
|
||
# count boxes in the same row as a feature
|
||
for i in range(len(self.boxes)):
|
||
mh = self.mean_height[self.boxes[i]["page_number"] - 1]
|
||
self.boxes[i]["in_row"] = 0
|
||
j = max(0, i - 12)
|
||
while j < min(i + 12, len(self.boxes)):
|
||
if j == i:
|
||
j += 1
|
||
continue
|
||
ydis = self._y_dis(self.boxes[i], self.boxes[j]) / mh
|
||
if abs(ydis) < 1:
|
||
self.boxes[i]["in_row"] += 1
|
||
elif ydis > 0:
|
||
break
|
||
j += 1
|
||
|
||
# concat between rows
|
||
boxes = deepcopy(self.boxes)
|
||
blocks = []
|
||
while boxes:
|
||
chunks = []
|
||
|
||
def dfs(up, dp):
|
||
chunks.append(up)
|
||
i = dp
|
||
while i < min(dp + 12, len(boxes)):
|
||
ydis = self._y_dis(up, boxes[i])
|
||
smpg = up["page_number"] == boxes[i]["page_number"]
|
||
mh = self.mean_height[up["page_number"] - 1]
|
||
mw = self.mean_width[up["page_number"] - 1]
|
||
if smpg and ydis > mh * 4:
|
||
break
|
||
if not smpg and ydis > mh * 16:
|
||
break
|
||
down = boxes[i]
|
||
if not concat_between_pages and down["page_number"] > up["page_number"]:
|
||
break
|
||
|
||
if up.get("R", "") != down.get(
|
||
"R", "") and up["text"][-1] != ",":
|
||
i += 1
|
||
continue
|
||
|
||
if re.match(r"[0-9]{2,3}/[0-9]{3}$", up["text"]) \
|
||
or re.match(r"[0-9]{2,3}/[0-9]{3}$", down["text"]) \
|
||
or not down["text"].strip():
|
||
i += 1
|
||
continue
|
||
|
||
if not down["text"].strip() or not up["text"].strip():
|
||
i += 1
|
||
continue
|
||
|
||
if up["x1"] < down["x0"] - 10 * \
|
||
mw or up["x0"] > down["x1"] + 10 * mw:
|
||
i += 1
|
||
continue
|
||
|
||
if i - dp < 5 and up.get("layout_type") == "text":
|
||
if up.get("layoutno", "1") == down.get(
|
||
"layoutno", "2"):
|
||
dfs(down, i + 1)
|
||
boxes.pop(i)
|
||
return
|
||
i += 1
|
||
continue
|
||
|
||
fea = self._updown_concat_features(up, down)
|
||
if self.updown_cnt_mdl.predict(
|
||
xgb.DMatrix([fea]))[0] <= 0.5:
|
||
i += 1
|
||
continue
|
||
dfs(down, i + 1)
|
||
boxes.pop(i)
|
||
return
|
||
|
||
dfs(boxes[0], 1)
|
||
boxes.pop(0)
|
||
if chunks:
|
||
blocks.append(chunks)
|
||
|
||
# concat within each block
|
||
boxes = []
|
||
for b in blocks:
|
||
if len(b) == 1:
|
||
boxes.append(b[0])
|
||
continue
|
||
t = b[0]
|
||
for c in b[1:]:
|
||
t["text"] = t["text"].strip()
|
||
c["text"] = c["text"].strip()
|
||
if not c["text"]:
|
||
continue
|
||
if t["text"] and re.match(
|
||
r"[0-9\.a-zA-Z]+$", t["text"][-1] + c["text"][-1]):
|
||
t["text"] += " "
|
||
t["text"] += c["text"]
|
||
t["x0"] = min(t["x0"], c["x0"])
|
||
t["x1"] = max(t["x1"], c["x1"])
|
||
t["page_number"] = min(t["page_number"], c["page_number"])
|
||
t["bottom"] = c["bottom"]
|
||
if not t["layout_type"] \
|
||
and c["layout_type"]:
|
||
t["layout_type"] = c["layout_type"]
|
||
boxes.append(t)
|
||
|
||
self.boxes = Recognizer.sort_Y_firstly(boxes, 0)
|
||
|
||
def _filter_forpages(self):
|
||
if not self.boxes:
|
||
return
|
||
findit = False
|
||
i = 0
|
||
while i < len(self.boxes):
|
||
if not re.match(r"(contents|目录|目次|table of contents|致谢|acknowledge)$",
|
||
re.sub(r"( | |\u3000)+", "", self.boxes[i]["text"].lower())):
|
||
i += 1
|
||
continue
|
||
findit = True
|
||
eng = re.match(
|
||
r"[0-9a-zA-Z :'.-]{5,}",
|
||
self.boxes[i]["text"].strip())
|
||
self.boxes.pop(i)
|
||
if i >= len(self.boxes):
|
||
break
|
||
prefix = self.boxes[i]["text"].strip()[:3] if not eng else " ".join(
|
||
self.boxes[i]["text"].strip().split()[:2])
|
||
while not prefix:
|
||
self.boxes.pop(i)
|
||
if i >= len(self.boxes):
|
||
break
|
||
prefix = self.boxes[i]["text"].strip()[:3] if not eng else " ".join(
|
||
self.boxes[i]["text"].strip().split()[:2])
|
||
self.boxes.pop(i)
|
||
if i >= len(self.boxes) or not prefix:
|
||
break
|
||
for j in range(i, min(i + 128, len(self.boxes))):
|
||
if not re.match(prefix, self.boxes[j]["text"]):
|
||
continue
|
||
for k in range(i, j):
|
||
self.boxes.pop(i)
|
||
break
|
||
if findit:
|
||
return
|
||
|
||
page_dirty = [0] * len(self.page_images)
|
||
for b in self.boxes:
|
||
if re.search(r"(··|··|··)", b["text"]):
|
||
page_dirty[b["page_number"] - 1] += 1
|
||
page_dirty = set([i + 1 for i, t in enumerate(page_dirty) if t > 3])
|
||
if not page_dirty:
|
||
return
|
||
i = 0
|
||
while i < len(self.boxes):
|
||
if self.boxes[i]["page_number"] in page_dirty:
|
||
self.boxes.pop(i)
|
||
continue
|
||
i += 1
|
||
|
||
def _merge_with_same_bullet(self):
|
||
i = 0
|
||
while i + 1 < len(self.boxes):
|
||
b = self.boxes[i]
|
||
b_ = self.boxes[i + 1]
|
||
if not b["text"].strip():
|
||
self.boxes.pop(i)
|
||
continue
|
||
if not b_["text"].strip():
|
||
self.boxes.pop(i + 1)
|
||
continue
|
||
|
||
if b["text"].strip()[0] != b_["text"].strip()[0] \
|
||
or b["text"].strip()[0].lower() in set("qwertyuopasdfghjklzxcvbnm") \
|
||
or rag_tokenizer.is_chinese(b["text"].strip()[0]) \
|
||
or b["top"] > b_["bottom"]:
|
||
i += 1
|
||
continue
|
||
b_["text"] = b["text"] + "\n" + b_["text"]
|
||
b_["x0"] = min(b["x0"], b_["x0"])
|
||
b_["x1"] = max(b["x1"], b_["x1"])
|
||
b_["top"] = b["top"]
|
||
self.boxes.pop(i)
|
||
|
||
def _extract_table_figure(self, need_image, ZM, return_html, need_position, separate_tables_figures=False):
|
||
tables = {}
|
||
figures = {}
|
||
# extract figure and table boxes
|
||
i = 0
|
||
lst_lout_no = ""
|
||
nomerge_lout_no = []
|
||
while i < len(self.boxes):
|
||
if "layoutno" not in self.boxes[i]:
|
||
i += 1
|
||
continue
|
||
lout_no = str(self.boxes[i]["page_number"]) + \
|
||
"-" + str(self.boxes[i]["layoutno"])
|
||
if TableStructureRecognizer.is_caption(self.boxes[i]) or self.boxes[i]["layout_type"] in ["table caption",
|
||
"title",
|
||
"figure caption",
|
||
"reference"]:
|
||
nomerge_lout_no.append(lst_lout_no)
|
||
if self.boxes[i]["layout_type"] == "table":
|
||
if re.match(r"(数据|资料|图表)*来源[:: ]", self.boxes[i]["text"]):
|
||
self.boxes.pop(i)
|
||
continue
|
||
if lout_no not in tables:
|
||
tables[lout_no] = []
|
||
tables[lout_no].append(self.boxes[i])
|
||
self.boxes.pop(i)
|
||
lst_lout_no = lout_no
|
||
continue
|
||
if need_image and self.boxes[i]["layout_type"] == "figure":
|
||
if re.match(r"(数据|资料|图表)*来源[:: ]", self.boxes[i]["text"]):
|
||
self.boxes.pop(i)
|
||
continue
|
||
if lout_no not in figures:
|
||
figures[lout_no] = []
|
||
figures[lout_no].append(self.boxes[i])
|
||
self.boxes.pop(i)
|
||
lst_lout_no = lout_no
|
||
continue
|
||
i += 1
|
||
|
||
# merge table on different pages
|
||
nomerge_lout_no = set(nomerge_lout_no)
|
||
tbls = sorted([(k, bxs) for k, bxs in tables.items()],
|
||
key=lambda x: (x[1][0]["top"], x[1][0]["x0"]))
|
||
|
||
i = len(tbls) - 1
|
||
while i - 1 >= 0:
|
||
k0, bxs0 = tbls[i - 1]
|
||
k, bxs = tbls[i]
|
||
i -= 1
|
||
if k0 in nomerge_lout_no:
|
||
continue
|
||
if bxs[0]["page_number"] == bxs0[0]["page_number"]:
|
||
continue
|
||
if bxs[0]["page_number"] - bxs0[0]["page_number"] > 1:
|
||
continue
|
||
mh = self.mean_height[bxs[0]["page_number"] - 1]
|
||
if self._y_dis(bxs0[-1], bxs[0]) > mh * 23:
|
||
continue
|
||
tables[k0].extend(tables[k])
|
||
del tables[k]
|
||
|
||
def x_overlapped(a, b):
|
||
return not any([a["x1"] < b["x0"], a["x0"] > b["x1"]])
|
||
|
||
# find captions and pop out
|
||
i = 0
|
||
while i < len(self.boxes):
|
||
c = self.boxes[i]
|
||
# mh = self.mean_height[c["page_number"]-1]
|
||
if not TableStructureRecognizer.is_caption(c):
|
||
i += 1
|
||
continue
|
||
|
||
# find the nearest layouts
|
||
def nearest(tbls):
|
||
nonlocal c
|
||
mink = ""
|
||
minv = 1000000000
|
||
for k, bxs in tbls.items():
|
||
for b in bxs:
|
||
if b.get("layout_type", "").find("caption") >= 0:
|
||
continue
|
||
y_dis = self._y_dis(c, b)
|
||
x_dis = self._x_dis(
|
||
c, b) if not x_overlapped(
|
||
c, b) else 0
|
||
dis = y_dis * y_dis + x_dis * x_dis
|
||
if dis < minv:
|
||
mink = k
|
||
minv = dis
|
||
return mink, minv
|
||
|
||
tk, tv = nearest(tables)
|
||
fk, fv = nearest(figures)
|
||
# if min(tv, fv) > 2000:
|
||
# i += 1
|
||
# continue
|
||
if tv < fv and tk:
|
||
tables[tk].insert(0, c)
|
||
logging.debug(
|
||
"TABLE:" +
|
||
self.boxes[i]["text"] +
|
||
"; Cap: " +
|
||
tk)
|
||
elif fk:
|
||
figures[fk].insert(0, c)
|
||
logging.debug(
|
||
"FIGURE:" +
|
||
self.boxes[i]["text"] +
|
||
"; Cap: " +
|
||
tk)
|
||
self.boxes.pop(i)
|
||
|
||
def cropout(bxs, ltype, poss):
|
||
nonlocal ZM
|
||
pn = set([b["page_number"] - 1 for b in bxs])
|
||
if len(pn) < 2:
|
||
pn = list(pn)[0]
|
||
ht = self.page_cum_height[pn]
|
||
b = {
|
||
"x0": np.min([b["x0"] for b in bxs]),
|
||
"top": np.min([b["top"] for b in bxs]) - ht,
|
||
"x1": np.max([b["x1"] for b in bxs]),
|
||
"bottom": np.max([b["bottom"] for b in bxs]) - ht
|
||
}
|
||
louts = [layout for layout in self.page_layout[pn] if layout["type"] == ltype]
|
||
ii = Recognizer.find_overlapped(b, louts, naive=True)
|
||
if ii is not None:
|
||
b = louts[ii]
|
||
else:
|
||
logging.warning(
|
||
f"Missing layout match: {pn + 1},%s" %
|
||
(bxs[0].get(
|
||
"layoutno", "")))
|
||
|
||
left, top, right, bott = b["x0"], b["top"], b["x1"], b["bottom"]
|
||
if right < left:
|
||
right = left + 1
|
||
poss.append((pn + self.page_from, left, right, top, bott))
|
||
return self.page_images[pn] \
|
||
.crop((left * ZM, top * ZM,
|
||
right * ZM, bott * ZM))
|
||
pn = {}
|
||
for b in bxs:
|
||
p = b["page_number"] - 1
|
||
if p not in pn:
|
||
pn[p] = []
|
||
pn[p].append(b)
|
||
pn = sorted(pn.items(), key=lambda x: x[0])
|
||
imgs = [cropout(arr, ltype, poss) for p, arr in pn]
|
||
pic = Image.new("RGB",
|
||
(int(np.max([i.size[0] for i in imgs])),
|
||
int(np.sum([m.size[1] for m in imgs]))),
|
||
(245, 245, 245))
|
||
height = 0
|
||
for img in imgs:
|
||
pic.paste(img, (0, int(height)))
|
||
height += img.size[1]
|
||
return pic
|
||
|
||
res = []
|
||
positions = []
|
||
figure_results = []
|
||
figure_positions = []
|
||
# crop figure out and add caption
|
||
for k, bxs in figures.items():
|
||
txt = "\n".join([b["text"] for b in bxs])
|
||
if not txt:
|
||
continue
|
||
|
||
poss = []
|
||
|
||
if separate_tables_figures:
|
||
figure_results.append(
|
||
(cropout(
|
||
bxs,
|
||
"figure", poss),
|
||
[txt]))
|
||
figure_positions.append(poss)
|
||
else:
|
||
res.append(
|
||
(cropout(
|
||
bxs,
|
||
"figure", poss),
|
||
[txt]))
|
||
positions.append(poss)
|
||
|
||
for k, bxs in tables.items():
|
||
if not bxs:
|
||
continue
|
||
bxs = Recognizer.sort_Y_firstly(bxs, np.mean(
|
||
[(b["bottom"] - b["top"]) / 2 for b in bxs]))
|
||
|
||
poss = []
|
||
|
||
res.append((cropout(bxs, "table", poss),
|
||
self.tbl_det.construct_table(bxs, html=return_html, is_english=self.is_english)))
|
||
positions.append(poss)
|
||
|
||
if separate_tables_figures:
|
||
assert len(positions) + len(figure_positions) == len(res) + len(figure_results)
|
||
if need_position:
|
||
return list(zip(res, positions)), list(zip(figure_results, figure_positions))
|
||
else:
|
||
return res, figure_results
|
||
else:
|
||
assert len(positions) == len(res)
|
||
if need_position:
|
||
return list(zip(res, positions))
|
||
else:
|
||
return res
|
||
|
||
def proj_match(self, line):
|
||
if len(line) <= 2:
|
||
return
|
||
if re.match(r"[0-9 ().,%%+/-]+$", line):
|
||
return False
|
||
for p, j in [
|
||
(r"第[零一二三四五六七八九十百]+章", 1),
|
||
(r"第[零一二三四五六七八九十百]+[条节]", 2),
|
||
(r"[零一二三四五六七八九十百]+[、 ]", 3),
|
||
(r"[\((][零一二三四五六七八九十百]+[)\)]", 4),
|
||
(r"[0-9]+(、|\.[ ]|\.[^0-9])", 5),
|
||
(r"[0-9]+\.[0-9]+(、|[. ]|[^0-9])", 6),
|
||
(r"[0-9]+\.[0-9]+\.[0-9]+(、|[ ]|[^0-9])", 7),
|
||
(r"[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+(、|[ ]|[^0-9])", 8),
|
||
(r".{,48}[::??]$", 9),
|
||
(r"[0-9]+)", 10),
|
||
(r"[\((][0-9]+[)\)]", 11),
|
||
(r"[零一二三四五六七八九十百]+是", 12),
|
||
(r"[⚫•➢✓]", 12)
|
||
]:
|
||
if re.match(p, line):
|
||
return j
|
||
return
|
||
|
||
def _line_tag(self, bx, ZM):
|
||
pn = [bx["page_number"]]
|
||
top = bx["top"] - self.page_cum_height[pn[0] - 1]
|
||
bott = bx["bottom"] - self.page_cum_height[pn[0] - 1]
|
||
page_images_cnt = len(self.page_images)
|
||
if pn[-1] - 1 >= page_images_cnt:
|
||
return ""
|
||
while bott * ZM > self.page_images[pn[-1] - 1].size[1]:
|
||
bott -= self.page_images[pn[-1] - 1].size[1] / ZM
|
||
pn.append(pn[-1] + 1)
|
||
if pn[-1] - 1 >= page_images_cnt:
|
||
return ""
|
||
|
||
return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
|
||
.format("-".join([str(p) for p in pn]),
|
||
bx["x0"], bx["x1"], top, bott)
|
||
|
||
def __filterout_scraps(self, boxes, ZM):
|
||
|
||
def width(b):
|
||
return b["x1"] - b["x0"]
|
||
|
||
def height(b):
|
||
return b["bottom"] - b["top"]
|
||
|
||
def usefull(b):
|
||
if b.get("layout_type"):
|
||
return True
|
||
if width(
|
||
b) > self.page_images[b["page_number"] - 1].size[0] / ZM / 3:
|
||
return True
|
||
if b["bottom"] - b["top"] > self.mean_height[b["page_number"] - 1]:
|
||
return True
|
||
return False
|
||
|
||
res = []
|
||
while boxes:
|
||
lines = []
|
||
widths = []
|
||
pw = self.page_images[boxes[0]["page_number"] - 1].size[0] / ZM
|
||
mh = self.mean_height[boxes[0]["page_number"] - 1]
|
||
mj = self.proj_match(
|
||
boxes[0]["text"]) or boxes[0].get(
|
||
"layout_type",
|
||
"") == "title"
|
||
|
||
def dfs(line, st):
|
||
nonlocal mh, pw, lines, widths
|
||
lines.append(line)
|
||
widths.append(width(line))
|
||
mmj = self.proj_match(
|
||
line["text"]) or line.get(
|
||
"layout_type",
|
||
"") == "title"
|
||
for i in range(st + 1, min(st + 20, len(boxes))):
|
||
if (boxes[i]["page_number"] - line["page_number"]) > 0:
|
||
break
|
||
if not mmj and self._y_dis(
|
||
line, boxes[i]) >= 3 * mh and height(line) < 1.5 * mh:
|
||
break
|
||
|
||
if not usefull(boxes[i]):
|
||
continue
|
||
if mmj or \
|
||
(self._x_dis(boxes[i], line) < pw / 10): \
|
||
# and abs(width(boxes[i])-width_mean)/max(width(boxes[i]),width_mean)<0.5):
|
||
# concat following
|
||
dfs(boxes[i], i)
|
||
boxes.pop(i)
|
||
break
|
||
|
||
try:
|
||
if usefull(boxes[0]):
|
||
dfs(boxes[0], 0)
|
||
else:
|
||
logging.debug("WASTE: " + boxes[0]["text"])
|
||
except Exception:
|
||
pass
|
||
boxes.pop(0)
|
||
mw = np.mean(widths)
|
||
if mj or mw / pw >= 0.35 or mw > 200:
|
||
res.append(
|
||
"\n".join([c["text"] + self._line_tag(c, ZM) for c in lines]))
|
||
else:
|
||
logging.debug("REMOVED: " +
|
||
"<<".join([c["text"] for c in lines]))
|
||
|
||
return "\n\n".join(res)
|
||
|
||
@staticmethod
|
||
def total_page_number(fnm, binary=None):
|
||
try:
|
||
with sys.modules[LOCK_KEY_pdfplumber]:
|
||
pdf = pdfplumber.open(
|
||
fnm) if not binary else pdfplumber.open(BytesIO(binary))
|
||
total_page = len(pdf.pages)
|
||
pdf.close()
|
||
return total_page
|
||
except Exception:
|
||
logging.exception("total_page_number")
|
||
|
||
def __images__(self, fnm, zoomin=3, page_from=0,
|
||
page_to=299, callback=None):
|
||
self.lefted_chars = []
|
||
self.mean_height = []
|
||
self.mean_width = []
|
||
self.boxes = []
|
||
self.garbages = {}
|
||
self.page_cum_height = [0]
|
||
self.page_layout = []
|
||
self.page_from = page_from
|
||
start = timer()
|
||
try:
|
||
with sys.modules[LOCK_KEY_pdfplumber]:
|
||
with (pdfplumber.open(fnm) if isinstance(fnm, str) else pdfplumber.open(BytesIO(fnm))) as pdf:
|
||
self.pdf = pdf
|
||
self.page_images = [p.to_image(resolution=72 * zoomin, antialias=True).annotated for i, p in
|
||
enumerate(self.pdf.pages[page_from:page_to])]
|
||
|
||
try:
|
||
self.page_chars = [[c for c in page.dedupe_chars().chars if self._has_color(c)] for page in self.pdf.pages[page_from:page_to]]
|
||
except Exception as e:
|
||
logging.warning(f"Failed to extract characters for pages {page_from}-{page_to}: {str(e)}")
|
||
self.page_chars = [[] for _ in range(page_to - page_from)] # If failed to extract, using empty list instead.
|
||
|
||
self.total_page = len(self.pdf.pages)
|
||
|
||
except Exception:
|
||
logging.exception("RAGFlowPdfParser __images__")
|
||
logging.info(f"__images__ dedupe_chars cost {timer() - start}s")
|
||
|
||
self.outlines = []
|
||
try:
|
||
with (pdf2_read(fnm if isinstance(fnm, str)
|
||
else BytesIO(fnm))) as pdf:
|
||
self.pdf = pdf
|
||
|
||
outlines = self.pdf.outline
|
||
def dfs(arr, depth):
|
||
for a in arr:
|
||
if isinstance(a, dict):
|
||
self.outlines.append((a["/Title"], depth))
|
||
continue
|
||
dfs(a, depth + 1)
|
||
|
||
dfs(outlines, 0)
|
||
|
||
except Exception as e:
|
||
logging.warning(f"Outlines exception: {e}")
|
||
|
||
if not self.outlines:
|
||
logging.warning("Miss outlines")
|
||
|
||
logging.debug("Images converted.")
|
||
self.is_english = [re.search(r"[a-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join(
|
||
random.choices([c["text"] for c in self.page_chars[i]], k=min(100, len(self.page_chars[i]))))) for i in
|
||
range(len(self.page_chars))]
|
||
if sum([1 if e else 0 for e in self.is_english]) > len(
|
||
self.page_images) / 2:
|
||
self.is_english = True
|
||
else:
|
||
self.is_english = False
|
||
|
||
async def __img_ocr(i, id, img, chars, limiter):
|
||
j = 0
|
||
while j + 1 < len(chars):
|
||
if chars[j]["text"] and chars[j + 1]["text"] \
|
||
and re.match(r"[0-9a-zA-Z,.:;!%]+", chars[j]["text"] + chars[j + 1]["text"]) \
|
||
and chars[j + 1]["x0"] - chars[j]["x1"] >= min(chars[j + 1]["width"],
|
||
chars[j]["width"]) / 2:
|
||
chars[j]["text"] += " "
|
||
j += 1
|
||
|
||
if limiter:
|
||
async with limiter:
|
||
await trio.to_thread.run_sync(lambda: self.__ocr(i + 1, img, chars, zoomin, id))
|
||
else:
|
||
self.__ocr(i + 1, img, chars, zoomin, id)
|
||
|
||
if callback and i % 6 == 5:
|
||
callback(prog=(i + 1) * 0.6 / len(self.page_images), msg="")
|
||
|
||
async def __img_ocr_launcher():
|
||
def __ocr_preprocess():
|
||
chars = self.page_chars[i] if not self.is_english else []
|
||
self.mean_height.append(
|
||
np.median(sorted([c["height"] for c in chars])) if chars else 0
|
||
)
|
||
self.mean_width.append(
|
||
np.median(sorted([c["width"] for c in chars])) if chars else 8
|
||
)
|
||
self.page_cum_height.append(img.size[1] / zoomin)
|
||
return chars
|
||
|
||
if self.parallel_limiter:
|
||
async with trio.open_nursery() as nursery:
|
||
for i, img in enumerate(self.page_images):
|
||
chars = __ocr_preprocess()
|
||
|
||
nursery.start_soon(__img_ocr, i, i % PARALLEL_DEVICES, img, chars,
|
||
self.parallel_limiter[i % PARALLEL_DEVICES])
|
||
await trio.sleep(0.1)
|
||
else:
|
||
for i, img in enumerate(self.page_images):
|
||
chars = __ocr_preprocess()
|
||
await __img_ocr(i, 0, img, chars, None)
|
||
|
||
start = timer()
|
||
|
||
trio.run(__img_ocr_launcher)
|
||
|
||
logging.info(f"__images__ {len(self.page_images)} pages cost {timer() - start}s")
|
||
|
||
if not self.is_english and not any(
|
||
[c for c in self.page_chars]) and self.boxes:
|
||
bxes = [b for bxs in self.boxes for b in bxs]
|
||
self.is_english = re.search(r"[\na-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}",
|
||
"".join([b["text"] for b in random.choices(bxes, k=min(30, len(bxes)))]))
|
||
|
||
logging.debug("Is it English:", self.is_english)
|
||
|
||
self.page_cum_height = np.cumsum(self.page_cum_height)
|
||
assert len(self.page_cum_height) == len(self.page_images) + 1
|
||
if len(self.boxes) == 0 and zoomin < 9:
|
||
self.__images__(fnm, zoomin * 3, page_from, page_to, callback)
|
||
|
||
def __call__(self, fnm, need_image=True, zoomin=3, return_html=False):
|
||
self.__images__(fnm, zoomin)
|
||
self._layouts_rec(zoomin)
|
||
self._table_transformer_job(zoomin)
|
||
self._text_merge()
|
||
self._concat_downward()
|
||
self._filter_forpages()
|
||
tbls = self._extract_table_figure(
|
||
need_image, zoomin, return_html, False)
|
||
return self.__filterout_scraps(deepcopy(self.boxes), zoomin), tbls
|
||
|
||
def remove_tag(self, txt):
|
||
return re.sub(r"@@[\t0-9.-]+?##", "", txt)
|
||
|
||
def crop(self, text, ZM=3, need_position=False):
|
||
imgs = []
|
||
poss = []
|
||
for tag in re.findall(r"@@[0-9-]+\t[0-9.\t]+##", text):
|
||
pn, left, right, top, bottom = tag.strip(
|
||
"#").strip("@").split("\t")
|
||
left, right, top, bottom = float(left), float(
|
||
right), float(top), float(bottom)
|
||
poss.append(([int(p) - 1 for p in pn.split("-")],
|
||
left, right, top, bottom))
|
||
if not poss:
|
||
if need_position:
|
||
return None, None
|
||
return
|
||
|
||
max_width = max(
|
||
np.max([right - left for (_, left, right, _, _) in poss]), 6)
|
||
GAP = 6
|
||
pos = poss[0]
|
||
poss.insert(0, ([pos[0][0]], pos[1], pos[2], max(
|
||
0, pos[3] - 120), max(pos[3] - GAP, 0)))
|
||
pos = poss[-1]
|
||
poss.append(([pos[0][-1]], pos[1], pos[2], min(self.page_images[pos[0][-1]].size[1] / ZM, pos[4] + GAP),
|
||
min(self.page_images[pos[0][-1]].size[1] / ZM, pos[4] + 120)))
|
||
|
||
positions = []
|
||
for ii, (pns, left, right, top, bottom) in enumerate(poss):
|
||
right = left + max_width
|
||
bottom *= ZM
|
||
for pn in pns[1:]:
|
||
bottom += self.page_images[pn - 1].size[1]
|
||
imgs.append(
|
||
self.page_images[pns[0]].crop((left * ZM, top * ZM,
|
||
right *
|
||
ZM, min(
|
||
bottom, self.page_images[pns[0]].size[1])
|
||
))
|
||
)
|
||
if 0 < ii < len(poss) - 1:
|
||
positions.append((pns[0] + self.page_from, left, right, top, min(
|
||
bottom, self.page_images[pns[0]].size[1]) / ZM))
|
||
bottom -= self.page_images[pns[0]].size[1]
|
||
for pn in pns[1:]:
|
||
imgs.append(
|
||
self.page_images[pn].crop((left * ZM, 0,
|
||
right * ZM,
|
||
min(bottom,
|
||
self.page_images[pn].size[1])
|
||
))
|
||
)
|
||
if 0 < ii < len(poss) - 1:
|
||
positions.append((pn + self.page_from, left, right, 0, min(
|
||
bottom, self.page_images[pn].size[1]) / ZM))
|
||
bottom -= self.page_images[pn].size[1]
|
||
|
||
if not imgs:
|
||
if need_position:
|
||
return None, None
|
||
return
|
||
height = 0
|
||
for img in imgs:
|
||
height += img.size[1] + GAP
|
||
height = int(height)
|
||
width = int(np.max([i.size[0] for i in imgs]))
|
||
pic = Image.new("RGB",
|
||
(width, height),
|
||
(245, 245, 245))
|
||
height = 0
|
||
for ii, img in enumerate(imgs):
|
||
if ii == 0 or ii + 1 == len(imgs):
|
||
img = img.convert('RGBA')
|
||
overlay = Image.new('RGBA', img.size, (0, 0, 0, 0))
|
||
overlay.putalpha(128)
|
||
img = Image.alpha_composite(img, overlay).convert("RGB")
|
||
pic.paste(img, (0, int(height)))
|
||
height += img.size[1] + GAP
|
||
|
||
if need_position:
|
||
return pic, positions
|
||
return pic
|
||
|
||
def get_position(self, bx, ZM):
|
||
poss = []
|
||
pn = bx["page_number"]
|
||
top = bx["top"] - self.page_cum_height[pn - 1]
|
||
bott = bx["bottom"] - self.page_cum_height[pn - 1]
|
||
poss.append((pn, bx["x0"], bx["x1"], top, min(
|
||
bott, self.page_images[pn - 1].size[1] / ZM)))
|
||
while bott * ZM > self.page_images[pn - 1].size[1]:
|
||
bott -= self.page_images[pn - 1].size[1] / ZM
|
||
top = 0
|
||
pn += 1
|
||
poss.append((pn, bx["x0"], bx["x1"], top, min(
|
||
bott, self.page_images[pn - 1].size[1] / ZM)))
|
||
return poss
|
||
|
||
|
||
class PlainParser:
|
||
def __call__(self, filename, from_page=0, to_page=100000, **kwargs):
|
||
self.outlines = []
|
||
lines = []
|
||
try:
|
||
self.pdf = pdf2_read(
|
||
filename if isinstance(
|
||
filename, str) else BytesIO(filename))
|
||
for page in self.pdf.pages[from_page:to_page]:
|
||
lines.extend([t for t in page.extract_text().split("\n")])
|
||
|
||
outlines = self.pdf.outline
|
||
|
||
def dfs(arr, depth):
|
||
for a in arr:
|
||
if isinstance(a, dict):
|
||
self.outlines.append((a["/Title"], depth))
|
||
continue
|
||
dfs(a, depth + 1)
|
||
|
||
dfs(outlines, 0)
|
||
except Exception:
|
||
logging.exception("Outlines exception")
|
||
if not self.outlines:
|
||
logging.warning("Miss outlines")
|
||
|
||
return [(line, "") for line in lines], []
|
||
|
||
def crop(self, ck, need_position):
|
||
raise NotImplementedError
|
||
|
||
@staticmethod
|
||
def remove_tag(txt):
|
||
raise NotImplementedError
|
||
|
||
|
||
class VisionParser(RAGFlowPdfParser):
|
||
def __init__(self, vision_model, *args, **kwargs):
|
||
super().__init__(*args, **kwargs)
|
||
self.vision_model = vision_model
|
||
|
||
def __images__(self, fnm, zoomin=3, page_from=0, page_to=299, callback=None):
|
||
try:
|
||
with sys.modules[LOCK_KEY_pdfplumber]:
|
||
self.pdf = pdfplumber.open(fnm) if isinstance(
|
||
fnm, str) else pdfplumber.open(BytesIO(fnm))
|
||
self.page_images = [p.to_image(resolution=72 * zoomin).annotated for i, p in
|
||
enumerate(self.pdf.pages[page_from:page_to])]
|
||
self.total_page = len(self.pdf.pages)
|
||
except Exception:
|
||
self.page_images = None
|
||
self.total_page = 0
|
||
logging.exception("VisionParser __images__")
|
||
|
||
def __call__(self, filename, from_page=0, to_page=100000, **kwargs):
|
||
callback = kwargs.get("callback", lambda prog, msg: None)
|
||
|
||
self.__images__(fnm=filename, zoomin=3, page_from=from_page, page_to=to_page, **kwargs)
|
||
|
||
total_pdf_pages = self.total_page
|
||
|
||
start_page = max(0, from_page)
|
||
end_page = min(to_page, total_pdf_pages)
|
||
|
||
all_docs = []
|
||
|
||
for idx, img_binary in enumerate(self.page_images or []):
|
||
pdf_page_num = idx # 0-based
|
||
if pdf_page_num < start_page or pdf_page_num >= end_page:
|
||
continue
|
||
|
||
docs = picture_vision_llm_chunk(
|
||
binary=img_binary,
|
||
vision_model=self.vision_model,
|
||
prompt=vision_llm_describe_prompt(page=pdf_page_num+1),
|
||
callback=callback,
|
||
)
|
||
|
||
if docs:
|
||
all_docs.append(docs)
|
||
return [(doc, "") for doc in all_docs], []
|
||
|
||
|
||
if __name__ == "__main__":
|
||
pass
|