mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-07-31 21:31:59 +08:00

### What problem does this PR solve? When using the online large model API knowledge base to extract knowledge graphs, frequent Rate Limit Errors were triggered, causing document parsing to fail. This commit fixes the issue by optimizing API calls in the following way: Added exponential backoff and jitter to the API call to reduce the frequency of Rate Limit Errors. ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue) - [ ] New Feature (non-breaking change which adds functionality) - [ ] Documentation Update - [ ] Refactoring - [ ] Performance Improvement - [ ] Other (please describe):
1658 lines
62 KiB
Python
1658 lines
62 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import re
|
|
import random
|
|
|
|
from openai.lib.azure import AzureOpenAI
|
|
from zhipuai import ZhipuAI
|
|
from dashscope import Generation
|
|
from abc import ABC
|
|
from openai import OpenAI
|
|
import openai
|
|
from ollama import Client
|
|
from rag.nlp import is_chinese, is_english
|
|
from rag.utils import num_tokens_from_string
|
|
import os
|
|
import json
|
|
import requests
|
|
import asyncio
|
|
import logging
|
|
import time
|
|
|
|
|
|
# Error message constants
|
|
ERROR_PREFIX = "**ERROR**"
|
|
ERROR_RATE_LIMIT = "RATE_LIMIT_EXCEEDED"
|
|
ERROR_AUTHENTICATION = "AUTH_ERROR"
|
|
ERROR_INVALID_REQUEST = "INVALID_REQUEST"
|
|
ERROR_SERVER = "SERVER_ERROR"
|
|
ERROR_TIMEOUT = "TIMEOUT"
|
|
ERROR_CONNECTION = "CONNECTION_ERROR"
|
|
ERROR_MODEL = "MODEL_ERROR"
|
|
ERROR_CONTENT_FILTER = "CONTENT_FILTERED"
|
|
ERROR_QUOTA = "QUOTA_EXCEEDED"
|
|
ERROR_MAX_RETRIES = "MAX_RETRIES_EXCEEDED"
|
|
ERROR_GENERIC = "GENERIC_ERROR"
|
|
|
|
LENGTH_NOTIFICATION_CN = "······\n由于大模型的上下文窗口大小限制,回答已经被大模型截断。"
|
|
LENGTH_NOTIFICATION_EN = "...\nThe answer is truncated by your chosen LLM due to its limitation on context length."
|
|
|
|
|
|
class Base(ABC):
|
|
def __init__(self, key, model_name, base_url):
|
|
timeout = int(os.environ.get('LM_TIMEOUT_SECONDS', 600))
|
|
self.client = OpenAI(api_key=key, base_url=base_url, timeout=timeout)
|
|
self.model_name = model_name
|
|
# Configure retry parameters
|
|
self.max_retries = int(os.environ.get('LLM_MAX_RETRIES', 5))
|
|
self.base_delay = float(os.environ.get('LLM_BASE_DELAY', 2.0))
|
|
|
|
def _get_delay(self, attempt):
|
|
"""Calculate retry delay time"""
|
|
return self.base_delay * (2 ** attempt) + random.uniform(0, 0.5)
|
|
|
|
def _classify_error(self, error):
|
|
"""Classify error based on error message content"""
|
|
error_str = str(error).lower()
|
|
|
|
if "rate limit" in error_str or "429" in error_str or "tpm limit" in error_str or "too many requests" in error_str or "requests per minute" in error_str:
|
|
return ERROR_RATE_LIMIT
|
|
elif "auth" in error_str or "key" in error_str or "apikey" in error_str or "401" in error_str or "forbidden" in error_str or "permission" in error_str:
|
|
return ERROR_AUTHENTICATION
|
|
elif "invalid" in error_str or "bad request" in error_str or "400" in error_str or "format" in error_str or "malformed" in error_str or "parameter" in error_str:
|
|
return ERROR_INVALID_REQUEST
|
|
elif "server" in error_str or "502" in error_str or "503" in error_str or "504" in error_str or "500" in error_str or "unavailable" in error_str:
|
|
return ERROR_SERVER
|
|
elif "timeout" in error_str or "timed out" in error_str:
|
|
return ERROR_TIMEOUT
|
|
elif "connect" in error_str or "network" in error_str or "unreachable" in error_str or "dns" in error_str:
|
|
return ERROR_CONNECTION
|
|
elif "quota" in error_str or "capacity" in error_str or "credit" in error_str or "billing" in error_str or "limit" in error_str and "rate" not in error_str:
|
|
return ERROR_QUOTA
|
|
elif "filter" in error_str or "content" in error_str or "policy" in error_str or "blocked" in error_str or "safety" in error_str:
|
|
return ERROR_CONTENT_FILTER
|
|
elif "model" in error_str or "not found" in error_str or "does not exist" in error_str or "not available" in error_str:
|
|
return ERROR_MODEL
|
|
else:
|
|
return ERROR_GENERIC
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
|
|
# Implement exponential backoff retry strategy
|
|
for attempt in range(self.max_retries):
|
|
try:
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
**gen_conf)
|
|
|
|
if any([not response.choices, not response.choices[0].message, not response.choices[0].message.content]):
|
|
return "", 0
|
|
ans = response.choices[0].message.content.strip()
|
|
if response.choices[0].finish_reason == "length":
|
|
if is_chinese(ans):
|
|
ans += LENGTH_NOTIFICATION_CN
|
|
else:
|
|
ans += LENGTH_NOTIFICATION_EN
|
|
return ans, self.total_token_count(response)
|
|
except Exception as e:
|
|
# Classify the error
|
|
error_code = self._classify_error(e)
|
|
|
|
# Check if it's a rate limit error or server error and not the last attempt
|
|
should_retry = (error_code == ERROR_RATE_LIMIT or error_code == ERROR_SERVER) and attempt < self.max_retries - 1
|
|
|
|
if should_retry:
|
|
delay = self._get_delay(attempt)
|
|
logging.warning(f"Error: {error_code}. Retrying in {delay:.2f} seconds... (Attempt {attempt+1}/{self.max_retries})")
|
|
time.sleep(delay)
|
|
else:
|
|
# For non-rate limit errors or the last attempt, return an error message
|
|
if attempt == self.max_retries - 1:
|
|
error_code = ERROR_MAX_RETRIES
|
|
return f"{ERROR_PREFIX}: {error_code} - {str(e)}", 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
ans = ""
|
|
total_tokens = 0
|
|
try:
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
stream=True,
|
|
**gen_conf)
|
|
for resp in response:
|
|
if not resp.choices:
|
|
continue
|
|
if not resp.choices[0].delta.content:
|
|
resp.choices[0].delta.content = ""
|
|
if hasattr(resp.choices[0].delta, "reasoning_content") and resp.choices[0].delta.reasoning_content:
|
|
if ans.find("<think>") < 0:
|
|
ans += "<think>"
|
|
ans = ans.replace("</think>", "")
|
|
ans += resp.choices[0].delta.reasoning_content + "</think>"
|
|
else:
|
|
ans += resp.choices[0].delta.content
|
|
|
|
tol = self.total_token_count(resp)
|
|
if not tol:
|
|
total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
|
|
else:
|
|
total_tokens = tol
|
|
|
|
if resp.choices[0].finish_reason == "length":
|
|
if is_chinese(ans):
|
|
ans += LENGTH_NOTIFICATION_CN
|
|
else:
|
|
ans += LENGTH_NOTIFICATION_EN
|
|
yield ans
|
|
|
|
except openai.APIError as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield total_tokens
|
|
|
|
def total_token_count(self, resp):
|
|
try:
|
|
return resp.usage.total_tokens
|
|
except Exception:
|
|
pass
|
|
try:
|
|
return resp["usage"]["total_tokens"]
|
|
except Exception:
|
|
pass
|
|
return 0
|
|
|
|
|
|
class GptTurbo(Base):
|
|
def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"):
|
|
if not base_url:
|
|
base_url = "https://api.openai.com/v1"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class MoonshotChat(Base):
|
|
def __init__(self, key, model_name="moonshot-v1-8k", base_url="https://api.moonshot.cn/v1"):
|
|
if not base_url:
|
|
base_url = "https://api.moonshot.cn/v1"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class XinferenceChat(Base):
|
|
def __init__(self, key=None, model_name="", base_url=""):
|
|
if not base_url:
|
|
raise ValueError("Local llm url cannot be None")
|
|
if base_url.split("/")[-1] != "v1":
|
|
base_url = os.path.join(base_url, "v1")
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class HuggingFaceChat(Base):
|
|
def __init__(self, key=None, model_name="", base_url=""):
|
|
if not base_url:
|
|
raise ValueError("Local llm url cannot be None")
|
|
if base_url.split("/")[-1] != "v1":
|
|
base_url = os.path.join(base_url, "v1")
|
|
super().__init__(key, model_name.split("___")[0], base_url)
|
|
|
|
|
|
class ModelScopeChat(Base):
|
|
def __init__(self, key=None, model_name="", base_url=""):
|
|
if not base_url:
|
|
raise ValueError("Local llm url cannot be None")
|
|
base_url = base_url.rstrip('/')
|
|
if base_url.split("/")[-1] != "v1":
|
|
base_url = os.path.join(base_url, "v1")
|
|
super().__init__(key, model_name.split("___")[0], base_url)
|
|
|
|
|
|
class DeepSeekChat(Base):
|
|
def __init__(self, key, model_name="deepseek-chat", base_url="https://api.deepseek.com/v1"):
|
|
if not base_url:
|
|
base_url = "https://api.deepseek.com/v1"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class AzureChat(Base):
|
|
def __init__(self, key, model_name, **kwargs):
|
|
api_key = json.loads(key).get('api_key', '')
|
|
api_version = json.loads(key).get('api_version', '2024-02-01')
|
|
self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
|
|
self.model_name = model_name
|
|
|
|
|
|
class BaiChuanChat(Base):
|
|
def __init__(self, key, model_name="Baichuan3-Turbo", base_url="https://api.baichuan-ai.com/v1"):
|
|
if not base_url:
|
|
base_url = "https://api.baichuan-ai.com/v1"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
@staticmethod
|
|
def _format_params(params):
|
|
return {
|
|
"temperature": params.get("temperature", 0.3),
|
|
"top_p": params.get("top_p", 0.85),
|
|
}
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
try:
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
extra_body={
|
|
"tools": [{
|
|
"type": "web_search",
|
|
"web_search": {
|
|
"enable": True,
|
|
"search_mode": "performance_first"
|
|
}
|
|
}]
|
|
},
|
|
**self._format_params(gen_conf))
|
|
ans = response.choices[0].message.content.strip()
|
|
if response.choices[0].finish_reason == "length":
|
|
if is_chinese([ans]):
|
|
ans += LENGTH_NOTIFICATION_CN
|
|
else:
|
|
ans += LENGTH_NOTIFICATION_EN
|
|
return ans, self.total_token_count(response)
|
|
except openai.APIError as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
ans = ""
|
|
total_tokens = 0
|
|
try:
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
extra_body={
|
|
"tools": [{
|
|
"type": "web_search",
|
|
"web_search": {
|
|
"enable": True,
|
|
"search_mode": "performance_first"
|
|
}
|
|
}]
|
|
},
|
|
stream=True,
|
|
**self._format_params(gen_conf))
|
|
for resp in response:
|
|
if not resp.choices:
|
|
continue
|
|
if not resp.choices[0].delta.content:
|
|
resp.choices[0].delta.content = ""
|
|
ans += resp.choices[0].delta.content
|
|
tol = self.total_token_count(resp)
|
|
if not tol:
|
|
total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
|
|
else:
|
|
total_tokens = tol
|
|
if resp.choices[0].finish_reason == "length":
|
|
if is_chinese([ans]):
|
|
ans += LENGTH_NOTIFICATION_CN
|
|
else:
|
|
ans += LENGTH_NOTIFICATION_EN
|
|
yield ans
|
|
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield total_tokens
|
|
|
|
|
|
class QWenChat(Base):
|
|
def __init__(self, key, model_name=Generation.Models.qwen_turbo, **kwargs):
|
|
import dashscope
|
|
dashscope.api_key = key
|
|
self.model_name = model_name
|
|
if self.is_reasoning_model(self.model_name):
|
|
super().__init__(key, model_name, "https://dashscope.aliyuncs.com/compatible-mode/v1")
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
if self.is_reasoning_model(self.model_name):
|
|
return super().chat(system, history, gen_conf)
|
|
|
|
stream_flag = str(os.environ.get('QWEN_CHAT_BY_STREAM', 'true')).lower() == 'true'
|
|
if not stream_flag:
|
|
from http import HTTPStatus
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
|
|
response = Generation.call(
|
|
self.model_name,
|
|
messages=history,
|
|
result_format='message',
|
|
**gen_conf
|
|
)
|
|
ans = ""
|
|
tk_count = 0
|
|
if response.status_code == HTTPStatus.OK:
|
|
ans += response.output.choices[0]['message']['content']
|
|
tk_count += self.total_token_count(response)
|
|
if response.output.choices[0].get("finish_reason", "") == "length":
|
|
if is_chinese([ans]):
|
|
ans += LENGTH_NOTIFICATION_CN
|
|
else:
|
|
ans += LENGTH_NOTIFICATION_EN
|
|
return ans, tk_count
|
|
|
|
return "**ERROR**: " + response.message, tk_count
|
|
else:
|
|
g = self._chat_streamly(system, history, gen_conf, incremental_output=True)
|
|
result_list = list(g)
|
|
error_msg_list = [item for item in result_list if str(item).find("**ERROR**") >= 0]
|
|
if len(error_msg_list) > 0:
|
|
return "**ERROR**: " + "".join(error_msg_list), 0
|
|
else:
|
|
return "".join(result_list[:-1]), result_list[-1]
|
|
|
|
def _chat_streamly(self, system, history, gen_conf, incremental_output=False):
|
|
from http import HTTPStatus
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
ans = ""
|
|
tk_count = 0
|
|
try:
|
|
response = Generation.call(
|
|
self.model_name,
|
|
messages=history,
|
|
result_format='message',
|
|
stream=True,
|
|
incremental_output=incremental_output,
|
|
**gen_conf
|
|
)
|
|
for resp in response:
|
|
if resp.status_code == HTTPStatus.OK:
|
|
ans = resp.output.choices[0]['message']['content']
|
|
tk_count = self.total_token_count(resp)
|
|
if resp.output.choices[0].get("finish_reason", "") == "length":
|
|
if is_chinese(ans):
|
|
ans += LENGTH_NOTIFICATION_CN
|
|
else:
|
|
ans += LENGTH_NOTIFICATION_EN
|
|
yield ans
|
|
else:
|
|
yield ans + "\n**ERROR**: " + resp.message if not re.search(r" (key|quota)",
|
|
str(resp.message).lower()) else "Out of credit. Please set the API key in **settings > Model providers.**"
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield tk_count
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
if self.is_reasoning_model(self.model_name):
|
|
return super().chat_streamly(system, history, gen_conf)
|
|
|
|
return self._chat_streamly(system, history, gen_conf)
|
|
|
|
@staticmethod
|
|
def is_reasoning_model(model_name: str) -> bool:
|
|
return any([
|
|
model_name.lower().find("deepseek") >= 0,
|
|
model_name.lower().find("qwq") >= 0 and model_name.lower() != 'qwq-32b-preview',
|
|
])
|
|
|
|
|
|
class ZhipuChat(Base):
|
|
def __init__(self, key, model_name="glm-3-turbo", **kwargs):
|
|
self.client = ZhipuAI(api_key=key)
|
|
self.model_name = model_name
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
try:
|
|
if "presence_penalty" in gen_conf:
|
|
del gen_conf["presence_penalty"]
|
|
if "frequency_penalty" in gen_conf:
|
|
del gen_conf["frequency_penalty"]
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
**gen_conf
|
|
)
|
|
ans = response.choices[0].message.content.strip()
|
|
if response.choices[0].finish_reason == "length":
|
|
if is_chinese(ans):
|
|
ans += LENGTH_NOTIFICATION_CN
|
|
else:
|
|
ans += LENGTH_NOTIFICATION_EN
|
|
return ans, self.total_token_count(response)
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
if "presence_penalty" in gen_conf:
|
|
del gen_conf["presence_penalty"]
|
|
if "frequency_penalty" in gen_conf:
|
|
del gen_conf["frequency_penalty"]
|
|
ans = ""
|
|
tk_count = 0
|
|
try:
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
stream=True,
|
|
**gen_conf
|
|
)
|
|
for resp in response:
|
|
if not resp.choices[0].delta.content:
|
|
continue
|
|
delta = resp.choices[0].delta.content
|
|
ans += delta
|
|
if resp.choices[0].finish_reason == "length":
|
|
if is_chinese(ans):
|
|
ans += LENGTH_NOTIFICATION_CN
|
|
else:
|
|
ans += LENGTH_NOTIFICATION_EN
|
|
tk_count = self.total_token_count(resp)
|
|
if resp.choices[0].finish_reason == "stop":
|
|
tk_count = self.total_token_count(resp)
|
|
yield ans
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield tk_count
|
|
|
|
|
|
class OllamaChat(Base):
|
|
def __init__(self, key, model_name, **kwargs):
|
|
self.client = Client(host=kwargs["base_url"]) if not key or key == "x" else \
|
|
Client(host=kwargs["base_url"], headers={"Authorization": f"Bear {key}"})
|
|
self.model_name = model_name
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
try:
|
|
options = {
|
|
"num_ctx": 32768
|
|
}
|
|
if "temperature" in gen_conf:
|
|
options["temperature"] = gen_conf["temperature"]
|
|
if "max_tokens" in gen_conf:
|
|
options["num_predict"] = gen_conf["max_tokens"]
|
|
if "top_p" in gen_conf:
|
|
options["top_p"] = gen_conf["top_p"]
|
|
if "presence_penalty" in gen_conf:
|
|
options["presence_penalty"] = gen_conf["presence_penalty"]
|
|
if "frequency_penalty" in gen_conf:
|
|
options["frequency_penalty"] = gen_conf["frequency_penalty"]
|
|
response = self.client.chat(
|
|
model=self.model_name,
|
|
messages=history,
|
|
options=options,
|
|
keep_alive=-1
|
|
)
|
|
ans = response["message"]["content"].strip()
|
|
return ans, response.get("eval_count", 0) + response.get("prompt_eval_count", 0)
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
options = {}
|
|
if "temperature" in gen_conf:
|
|
options["temperature"] = gen_conf["temperature"]
|
|
if "max_tokens" in gen_conf:
|
|
options["num_predict"] = gen_conf["max_tokens"]
|
|
if "top_p" in gen_conf:
|
|
options["top_p"] = gen_conf["top_p"]
|
|
if "presence_penalty" in gen_conf:
|
|
options["presence_penalty"] = gen_conf["presence_penalty"]
|
|
if "frequency_penalty" in gen_conf:
|
|
options["frequency_penalty"] = gen_conf["frequency_penalty"]
|
|
ans = ""
|
|
try:
|
|
response = self.client.chat(
|
|
model=self.model_name,
|
|
messages=history,
|
|
stream=True,
|
|
options=options,
|
|
keep_alive=-1
|
|
)
|
|
for resp in response:
|
|
if resp["done"]:
|
|
yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
|
|
ans += resp["message"]["content"]
|
|
yield ans
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
yield 0
|
|
|
|
|
|
class LocalAIChat(Base):
|
|
def __init__(self, key, model_name, base_url):
|
|
if not base_url:
|
|
raise ValueError("Local llm url cannot be None")
|
|
if base_url.split("/")[-1] != "v1":
|
|
base_url = os.path.join(base_url, "v1")
|
|
self.client = OpenAI(api_key="empty", base_url=base_url)
|
|
self.model_name = model_name.split("___")[0]
|
|
|
|
|
|
class LocalLLM(Base):
|
|
class RPCProxy:
|
|
def __init__(self, host, port):
|
|
self.host = host
|
|
self.port = int(port)
|
|
self.__conn()
|
|
|
|
def __conn(self):
|
|
from multiprocessing.connection import Client
|
|
|
|
self._connection = Client(
|
|
(self.host, self.port), authkey=b"infiniflow-token4kevinhu"
|
|
)
|
|
|
|
def __getattr__(self, name):
|
|
import pickle
|
|
|
|
def do_rpc(*args, **kwargs):
|
|
for _ in range(3):
|
|
try:
|
|
self._connection.send(pickle.dumps((name, args, kwargs)))
|
|
return pickle.loads(self._connection.recv())
|
|
except Exception:
|
|
self.__conn()
|
|
raise Exception("RPC connection lost!")
|
|
|
|
return do_rpc
|
|
|
|
def __init__(self, key, model_name):
|
|
from jina import Client
|
|
|
|
self.client = Client(port=12345, protocol="grpc", asyncio=True)
|
|
|
|
def _prepare_prompt(self, system, history, gen_conf):
|
|
from rag.svr.jina_server import Prompt
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
return Prompt(message=history, gen_conf=gen_conf)
|
|
|
|
def _stream_response(self, endpoint, prompt):
|
|
from rag.svr.jina_server import Generation
|
|
answer = ""
|
|
try:
|
|
res = self.client.stream_doc(
|
|
on=endpoint, inputs=prompt, return_type=Generation
|
|
)
|
|
loop = asyncio.get_event_loop()
|
|
try:
|
|
while True:
|
|
answer = loop.run_until_complete(res.__anext__()).text
|
|
yield answer
|
|
except StopAsyncIteration:
|
|
pass
|
|
except Exception as e:
|
|
yield answer + "\n**ERROR**: " + str(e)
|
|
yield num_tokens_from_string(answer)
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
prompt = self._prepare_prompt(system, history, gen_conf)
|
|
chat_gen = self._stream_response("/chat", prompt)
|
|
ans = next(chat_gen)
|
|
total_tokens = next(chat_gen)
|
|
return ans, total_tokens
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
prompt = self._prepare_prompt(system, history, gen_conf)
|
|
return self._stream_response("/stream", prompt)
|
|
|
|
|
|
class VolcEngineChat(Base):
|
|
def __init__(self, key, model_name, base_url='https://ark.cn-beijing.volces.com/api/v3'):
|
|
"""
|
|
Since do not want to modify the original database fields, and the VolcEngine authentication method is quite special,
|
|
Assemble ark_api_key, ep_id into api_key, store it as a dictionary type, and parse it for use
|
|
model_name is for display only
|
|
"""
|
|
base_url = base_url if base_url else 'https://ark.cn-beijing.volces.com/api/v3'
|
|
ark_api_key = json.loads(key).get('ark_api_key', '')
|
|
model_name = json.loads(key).get('ep_id', '') + json.loads(key).get('endpoint_id', '')
|
|
super().__init__(ark_api_key, model_name, base_url)
|
|
|
|
|
|
class MiniMaxChat(Base):
|
|
def __init__(
|
|
self,
|
|
key,
|
|
model_name,
|
|
base_url="https://api.minimax.chat/v1/text/chatcompletion_v2",
|
|
):
|
|
if not base_url:
|
|
base_url = "https://api.minimax.chat/v1/text/chatcompletion_v2"
|
|
self.base_url = base_url
|
|
self.model_name = model_name
|
|
self.api_key = key
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
for k in list(gen_conf.keys()):
|
|
if k not in ["temperature", "top_p", "max_tokens"]:
|
|
del gen_conf[k]
|
|
headers = {
|
|
"Authorization": f"Bearer {self.api_key}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
payload = json.dumps(
|
|
{"model": self.model_name, "messages": history, **gen_conf}
|
|
)
|
|
try:
|
|
response = requests.request(
|
|
"POST", url=self.base_url, headers=headers, data=payload
|
|
)
|
|
response = response.json()
|
|
ans = response["choices"][0]["message"]["content"].strip()
|
|
if response["choices"][0]["finish_reason"] == "length":
|
|
if is_chinese(ans):
|
|
ans += LENGTH_NOTIFICATION_CN
|
|
else:
|
|
ans += LENGTH_NOTIFICATION_EN
|
|
return ans, self.total_token_count(response)
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
for k in list(gen_conf.keys()):
|
|
if k not in ["temperature", "top_p", "max_tokens"]:
|
|
del gen_conf[k]
|
|
ans = ""
|
|
total_tokens = 0
|
|
try:
|
|
headers = {
|
|
"Authorization": f"Bearer {self.api_key}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
payload = json.dumps(
|
|
{
|
|
"model": self.model_name,
|
|
"messages": history,
|
|
"stream": True,
|
|
**gen_conf,
|
|
}
|
|
)
|
|
response = requests.request(
|
|
"POST",
|
|
url=self.base_url,
|
|
headers=headers,
|
|
data=payload,
|
|
)
|
|
for resp in response.text.split("\n\n")[:-1]:
|
|
resp = json.loads(resp[6:])
|
|
text = ""
|
|
if "choices" in resp and "delta" in resp["choices"][0]:
|
|
text = resp["choices"][0]["delta"]["content"]
|
|
ans += text
|
|
tol = self.total_token_count(resp)
|
|
if not tol:
|
|
total_tokens += num_tokens_from_string(text)
|
|
else:
|
|
total_tokens = tol
|
|
yield ans
|
|
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield total_tokens
|
|
|
|
|
|
class MistralChat(Base):
|
|
|
|
def __init__(self, key, model_name, base_url=None):
|
|
from mistralai.client import MistralClient
|
|
self.client = MistralClient(api_key=key)
|
|
self.model_name = model_name
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
for k in list(gen_conf.keys()):
|
|
if k not in ["temperature", "top_p", "max_tokens"]:
|
|
del gen_conf[k]
|
|
try:
|
|
response = self.client.chat(
|
|
model=self.model_name,
|
|
messages=history,
|
|
**gen_conf)
|
|
ans = response.choices[0].message.content
|
|
if response.choices[0].finish_reason == "length":
|
|
if is_chinese(ans):
|
|
ans += LENGTH_NOTIFICATION_CN
|
|
else:
|
|
ans += LENGTH_NOTIFICATION_EN
|
|
return ans, self.total_token_count(response)
|
|
except openai.APIError as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
for k in list(gen_conf.keys()):
|
|
if k not in ["temperature", "top_p", "max_tokens"]:
|
|
del gen_conf[k]
|
|
ans = ""
|
|
total_tokens = 0
|
|
try:
|
|
response = self.client.chat_stream(
|
|
model=self.model_name,
|
|
messages=history,
|
|
**gen_conf)
|
|
for resp in response:
|
|
if not resp.choices or not resp.choices[0].delta.content:
|
|
continue
|
|
ans += resp.choices[0].delta.content
|
|
total_tokens += 1
|
|
if resp.choices[0].finish_reason == "length":
|
|
if is_chinese(ans):
|
|
ans += LENGTH_NOTIFICATION_CN
|
|
else:
|
|
ans += LENGTH_NOTIFICATION_EN
|
|
yield ans
|
|
|
|
except openai.APIError as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield total_tokens
|
|
|
|
|
|
class BedrockChat(Base):
|
|
|
|
def __init__(self, key, model_name, **kwargs):
|
|
import boto3
|
|
self.bedrock_ak = json.loads(key).get('bedrock_ak', '')
|
|
self.bedrock_sk = json.loads(key).get('bedrock_sk', '')
|
|
self.bedrock_region = json.loads(key).get('bedrock_region', '')
|
|
self.model_name = model_name
|
|
|
|
if self.bedrock_ak == '' or self.bedrock_sk == '' or self.bedrock_region == '':
|
|
# Try to create a client using the default credentials (AWS_PROFILE, AWS_DEFAULT_REGION, etc.)
|
|
self.client = boto3.client('bedrock-runtime')
|
|
else:
|
|
self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
|
|
aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
from botocore.exceptions import ClientError
|
|
for k in list(gen_conf.keys()):
|
|
if k not in ["top_p", "max_tokens"]:
|
|
del gen_conf[k]
|
|
for item in history:
|
|
if not isinstance(item["content"], list) and not isinstance(item["content"], tuple):
|
|
item["content"] = [{"text": item["content"]}]
|
|
|
|
try:
|
|
# Send the message to the model, using a basic inference configuration.
|
|
response = self.client.converse(
|
|
modelId=self.model_name,
|
|
messages=history,
|
|
inferenceConfig=gen_conf,
|
|
system=[{"text": (system if system else "Answer the user's message.")}],
|
|
)
|
|
|
|
# Extract and print the response text.
|
|
ans = response["output"]["message"]["content"][0]["text"]
|
|
return ans, num_tokens_from_string(ans)
|
|
|
|
except (ClientError, Exception) as e:
|
|
return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
from botocore.exceptions import ClientError
|
|
for k in list(gen_conf.keys()):
|
|
if k not in ["top_p", "max_tokens"]:
|
|
del gen_conf[k]
|
|
for item in history:
|
|
if not isinstance(item["content"], list) and not isinstance(item["content"], tuple):
|
|
item["content"] = [{"text": item["content"]}]
|
|
|
|
if self.model_name.split('.')[0] == 'ai21':
|
|
try:
|
|
response = self.client.converse(
|
|
modelId=self.model_name,
|
|
messages=history,
|
|
inferenceConfig=gen_conf,
|
|
system=[{"text": (system if system else "Answer the user's message.")}]
|
|
)
|
|
ans = response["output"]["message"]["content"][0]["text"]
|
|
return ans, num_tokens_from_string(ans)
|
|
|
|
except (ClientError, Exception) as e:
|
|
return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0
|
|
|
|
ans = ""
|
|
try:
|
|
# Send the message to the model, using a basic inference configuration.
|
|
streaming_response = self.client.converse_stream(
|
|
modelId=self.model_name,
|
|
messages=history,
|
|
inferenceConfig=gen_conf,
|
|
system=[{"text": (system if system else "Answer the user's message.")}]
|
|
)
|
|
|
|
# Extract and print the streamed response text in real-time.
|
|
for resp in streaming_response["stream"]:
|
|
if "contentBlockDelta" in resp:
|
|
ans += resp["contentBlockDelta"]["delta"]["text"]
|
|
yield ans
|
|
|
|
except (ClientError, Exception) as e:
|
|
yield ans + f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}"
|
|
|
|
yield num_tokens_from_string(ans)
|
|
|
|
|
|
class GeminiChat(Base):
|
|
|
|
def __init__(self, key, model_name, base_url=None):
|
|
from google.generativeai import client, GenerativeModel
|
|
|
|
client.configure(api_key=key)
|
|
_client = client.get_default_generative_client()
|
|
self.model_name = 'models/' + model_name
|
|
self.model = GenerativeModel(model_name=self.model_name)
|
|
self.model._client = _client
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
from google.generativeai.types import content_types
|
|
|
|
if system:
|
|
self.model._system_instruction = content_types.to_content(system)
|
|
for k in list(gen_conf.keys()):
|
|
if k not in ["temperature", "top_p", "max_tokens"]:
|
|
del gen_conf[k]
|
|
for item in history:
|
|
if 'role' in item and item['role'] == 'assistant':
|
|
item['role'] = 'model'
|
|
if 'role' in item and item['role'] == 'system':
|
|
item['role'] = 'user'
|
|
if 'content' in item:
|
|
item['parts'] = item.pop('content')
|
|
|
|
try:
|
|
response = self.model.generate_content(
|
|
history,
|
|
generation_config=gen_conf)
|
|
ans = response.text
|
|
return ans, response.usage_metadata.total_token_count
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
from google.generativeai.types import content_types
|
|
|
|
if system:
|
|
self.model._system_instruction = content_types.to_content(system)
|
|
for k in list(gen_conf.keys()):
|
|
if k not in ["temperature", "top_p", "max_tokens"]:
|
|
del gen_conf[k]
|
|
for item in history:
|
|
if 'role' in item and item['role'] == 'assistant':
|
|
item['role'] = 'model'
|
|
if 'content' in item:
|
|
item['parts'] = item.pop('content')
|
|
ans = ""
|
|
try:
|
|
response = self.model.generate_content(
|
|
history,
|
|
generation_config=gen_conf, stream=True)
|
|
for resp in response:
|
|
ans += resp.text
|
|
yield ans
|
|
|
|
yield response._chunks[-1].usage_metadata.total_token_count
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield 0
|
|
|
|
|
|
class GroqChat(Base):
|
|
def __init__(self, key, model_name, base_url=''):
|
|
from groq import Groq
|
|
self.client = Groq(api_key=key)
|
|
self.model_name = model_name
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
for k in list(gen_conf.keys()):
|
|
if k not in ["temperature", "top_p", "max_tokens"]:
|
|
del gen_conf[k]
|
|
ans = ""
|
|
try:
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
**gen_conf
|
|
)
|
|
ans = response.choices[0].message.content
|
|
if response.choices[0].finish_reason == "length":
|
|
if is_chinese(ans):
|
|
ans += LENGTH_NOTIFICATION_CN
|
|
else:
|
|
ans += LENGTH_NOTIFICATION_EN
|
|
return ans, self.total_token_count(response)
|
|
except Exception as e:
|
|
return ans + "\n**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
for k in list(gen_conf.keys()):
|
|
if k not in ["temperature", "top_p", "max_tokens"]:
|
|
del gen_conf[k]
|
|
ans = ""
|
|
total_tokens = 0
|
|
try:
|
|
response = self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
stream=True,
|
|
**gen_conf
|
|
)
|
|
for resp in response:
|
|
if not resp.choices or not resp.choices[0].delta.content:
|
|
continue
|
|
ans += resp.choices[0].delta.content
|
|
total_tokens += 1
|
|
if resp.choices[0].finish_reason == "length":
|
|
if is_chinese(ans):
|
|
ans += LENGTH_NOTIFICATION_CN
|
|
else:
|
|
ans += LENGTH_NOTIFICATION_EN
|
|
yield ans
|
|
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield total_tokens
|
|
|
|
|
|
## openrouter
|
|
class OpenRouterChat(Base):
|
|
def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1"):
|
|
if not base_url:
|
|
base_url = "https://openrouter.ai/api/v1"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class StepFunChat(Base):
|
|
def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1"):
|
|
if not base_url:
|
|
base_url = "https://api.stepfun.com/v1"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class NvidiaChat(Base):
|
|
def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1"):
|
|
if not base_url:
|
|
base_url = "https://integrate.api.nvidia.com/v1"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class LmStudioChat(Base):
|
|
def __init__(self, key, model_name, base_url):
|
|
if not base_url:
|
|
raise ValueError("Local llm url cannot be None")
|
|
if base_url.split("/")[-1] != "v1":
|
|
base_url = os.path.join(base_url, "v1")
|
|
self.client = OpenAI(api_key="lm-studio", base_url=base_url)
|
|
self.model_name = model_name
|
|
|
|
|
|
class OpenAI_APIChat(Base):
|
|
def __init__(self, key, model_name, base_url):
|
|
if not base_url:
|
|
raise ValueError("url cannot be None")
|
|
model_name = model_name.split("___")[0]
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class PPIOChat(Base):
|
|
def __init__(self, key, model_name, base_url="https://api.ppinfra.com/v3/openai"):
|
|
if not base_url:
|
|
base_url = "https://api.ppinfra.com/v3/openai"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class CoHereChat(Base):
|
|
def __init__(self, key, model_name, base_url=""):
|
|
from cohere import Client
|
|
|
|
self.client = Client(api_key=key)
|
|
self.model_name = model_name
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
if "top_p" in gen_conf:
|
|
gen_conf["p"] = gen_conf.pop("top_p")
|
|
if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf:
|
|
gen_conf.pop("presence_penalty")
|
|
for item in history:
|
|
if "role" in item and item["role"] == "user":
|
|
item["role"] = "USER"
|
|
if "role" in item and item["role"] == "assistant":
|
|
item["role"] = "CHATBOT"
|
|
if "content" in item:
|
|
item["message"] = item.pop("content")
|
|
mes = history.pop()["message"]
|
|
ans = ""
|
|
try:
|
|
response = self.client.chat(
|
|
model=self.model_name, chat_history=history, message=mes, **gen_conf
|
|
)
|
|
ans = response.text
|
|
if response.finish_reason == "MAX_TOKENS":
|
|
ans += (
|
|
"...\nFor the content length reason, it stopped, continue?"
|
|
if is_english([ans])
|
|
else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
)
|
|
return (
|
|
ans,
|
|
response.meta.tokens.input_tokens + response.meta.tokens.output_tokens,
|
|
)
|
|
except Exception as e:
|
|
return ans + "\n**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if system:
|
|
history.insert(0, {"role": "system", "content": system})
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
if "top_p" in gen_conf:
|
|
gen_conf["p"] = gen_conf.pop("top_p")
|
|
if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf:
|
|
gen_conf.pop("presence_penalty")
|
|
for item in history:
|
|
if "role" in item and item["role"] == "user":
|
|
item["role"] = "USER"
|
|
if "role" in item and item["role"] == "assistant":
|
|
item["role"] = "CHATBOT"
|
|
if "content" in item:
|
|
item["message"] = item.pop("content")
|
|
mes = history.pop()["message"]
|
|
ans = ""
|
|
total_tokens = 0
|
|
try:
|
|
response = self.client.chat_stream(
|
|
model=self.model_name, chat_history=history, message=mes, **gen_conf
|
|
)
|
|
for resp in response:
|
|
if resp.event_type == "text-generation":
|
|
ans += resp.text
|
|
total_tokens += num_tokens_from_string(resp.text)
|
|
elif resp.event_type == "stream-end":
|
|
if resp.finish_reason == "MAX_TOKENS":
|
|
ans += (
|
|
"...\nFor the content length reason, it stopped, continue?"
|
|
if is_english([ans])
|
|
else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
)
|
|
yield ans
|
|
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield total_tokens
|
|
|
|
|
|
class LeptonAIChat(Base):
|
|
def __init__(self, key, model_name, base_url=None):
|
|
if not base_url:
|
|
base_url = os.path.join("https://" + model_name + ".lepton.run", "api", "v1")
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class TogetherAIChat(Base):
|
|
def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"):
|
|
if not base_url:
|
|
base_url = "https://api.together.xyz/v1"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class PerfXCloudChat(Base):
|
|
def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"):
|
|
if not base_url:
|
|
base_url = "https://cloud.perfxlab.cn/v1"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class UpstageChat(Base):
|
|
def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"):
|
|
if not base_url:
|
|
base_url = "https://api.upstage.ai/v1/solar"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class NovitaAIChat(Base):
|
|
def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai"):
|
|
if not base_url:
|
|
base_url = "https://api.novita.ai/v3/openai"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class SILICONFLOWChat(Base):
|
|
def __init__(self, key, model_name, base_url="https://api.siliconflow.cn/v1"):
|
|
if not base_url:
|
|
base_url = "https://api.siliconflow.cn/v1"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class YiChat(Base):
|
|
def __init__(self, key, model_name, base_url="https://api.lingyiwanwu.com/v1"):
|
|
if not base_url:
|
|
base_url = "https://api.lingyiwanwu.com/v1"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class ReplicateChat(Base):
|
|
def __init__(self, key, model_name, base_url=None):
|
|
from replicate.client import Client
|
|
|
|
self.model_name = model_name
|
|
self.client = Client(api_token=key)
|
|
self.system = ""
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
if system:
|
|
self.system = system
|
|
prompt = "\n".join(
|
|
[item["role"] + ":" + item["content"] for item in history[-5:]]
|
|
)
|
|
ans = ""
|
|
try:
|
|
response = self.client.run(
|
|
self.model_name,
|
|
input={"system_prompt": self.system, "prompt": prompt, **gen_conf},
|
|
)
|
|
ans = "".join(response)
|
|
return ans, num_tokens_from_string(ans)
|
|
except Exception as e:
|
|
return ans + "\n**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
if system:
|
|
self.system = system
|
|
prompt = "\n".join(
|
|
[item["role"] + ":" + item["content"] for item in history[-5:]]
|
|
)
|
|
ans = ""
|
|
try:
|
|
response = self.client.run(
|
|
self.model_name,
|
|
input={"system_prompt": self.system, "prompt": prompt, **gen_conf},
|
|
)
|
|
for resp in response:
|
|
ans += resp
|
|
yield ans
|
|
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield num_tokens_from_string(ans)
|
|
|
|
|
|
class HunyuanChat(Base):
|
|
def __init__(self, key, model_name, base_url=None):
|
|
from tencentcloud.common import credential
|
|
from tencentcloud.hunyuan.v20230901 import hunyuan_client
|
|
|
|
key = json.loads(key)
|
|
sid = key.get("hunyuan_sid", "")
|
|
sk = key.get("hunyuan_sk", "")
|
|
cred = credential.Credential(sid, sk)
|
|
self.model_name = model_name
|
|
self.client = hunyuan_client.HunyuanClient(cred, "")
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
from tencentcloud.hunyuan.v20230901 import models
|
|
from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
|
|
TencentCloudSDKException,
|
|
)
|
|
|
|
_gen_conf = {}
|
|
_history = [{k.capitalize(): v for k, v in item.items()} for item in history]
|
|
if system:
|
|
_history.insert(0, {"Role": "system", "Content": system})
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
if "temperature" in gen_conf:
|
|
_gen_conf["Temperature"] = gen_conf["temperature"]
|
|
if "top_p" in gen_conf:
|
|
_gen_conf["TopP"] = gen_conf["top_p"]
|
|
|
|
req = models.ChatCompletionsRequest()
|
|
params = {"Model": self.model_name, "Messages": _history, **_gen_conf}
|
|
req.from_json_string(json.dumps(params))
|
|
ans = ""
|
|
try:
|
|
response = self.client.ChatCompletions(req)
|
|
ans = response.Choices[0].Message.Content
|
|
return ans, response.Usage.TotalTokens
|
|
except TencentCloudSDKException as e:
|
|
return ans + "\n**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
from tencentcloud.hunyuan.v20230901 import models
|
|
from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
|
|
TencentCloudSDKException,
|
|
)
|
|
|
|
_gen_conf = {}
|
|
_history = [{k.capitalize(): v for k, v in item.items()} for item in history]
|
|
if system:
|
|
_history.insert(0, {"Role": "system", "Content": system})
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
if "temperature" in gen_conf:
|
|
_gen_conf["Temperature"] = gen_conf["temperature"]
|
|
if "top_p" in gen_conf:
|
|
_gen_conf["TopP"] = gen_conf["top_p"]
|
|
req = models.ChatCompletionsRequest()
|
|
params = {
|
|
"Model": self.model_name,
|
|
"Messages": _history,
|
|
"Stream": True,
|
|
**_gen_conf,
|
|
}
|
|
req.from_json_string(json.dumps(params))
|
|
ans = ""
|
|
total_tokens = 0
|
|
try:
|
|
response = self.client.ChatCompletions(req)
|
|
for resp in response:
|
|
resp = json.loads(resp["data"])
|
|
if not resp["Choices"] or not resp["Choices"][0]["Delta"]["Content"]:
|
|
continue
|
|
ans += resp["Choices"][0]["Delta"]["Content"]
|
|
total_tokens += 1
|
|
|
|
yield ans
|
|
|
|
except TencentCloudSDKException as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield total_tokens
|
|
|
|
|
|
class SparkChat(Base):
|
|
def __init__(
|
|
self, key, model_name, base_url="https://spark-api-open.xf-yun.com/v1"
|
|
):
|
|
if not base_url:
|
|
base_url = "https://spark-api-open.xf-yun.com/v1"
|
|
model2version = {
|
|
"Spark-Max": "generalv3.5",
|
|
"Spark-Lite": "general",
|
|
"Spark-Pro": "generalv3",
|
|
"Spark-Pro-128K": "pro-128k",
|
|
"Spark-4.0-Ultra": "4.0Ultra",
|
|
}
|
|
version2model = {v: k for k, v in model2version.items()}
|
|
assert model_name in model2version or model_name in version2model, f"The given model name is not supported yet. Support: {list(model2version.keys())}"
|
|
if model_name in model2version:
|
|
model_version = model2version[model_name]
|
|
else:
|
|
model_version = model_name
|
|
super().__init__(key, model_version, base_url)
|
|
|
|
|
|
class BaiduYiyanChat(Base):
|
|
def __init__(self, key, model_name, base_url=None):
|
|
import qianfan
|
|
|
|
key = json.loads(key)
|
|
ak = key.get("yiyan_ak", "")
|
|
sk = key.get("yiyan_sk", "")
|
|
self.client = qianfan.ChatCompletion(ak=ak, sk=sk)
|
|
self.model_name = model_name.lower()
|
|
self.system = ""
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
self.system = system
|
|
gen_conf["penalty_score"] = (
|
|
(gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty",
|
|
0)) / 2
|
|
) + 1
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
ans = ""
|
|
|
|
try:
|
|
response = self.client.do(
|
|
model=self.model_name,
|
|
messages=history,
|
|
system=self.system,
|
|
**gen_conf
|
|
).body
|
|
ans = response['result']
|
|
return ans, self.total_token_count(response)
|
|
|
|
except Exception as e:
|
|
return ans + "\n**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if system:
|
|
self.system = system
|
|
gen_conf["penalty_score"] = (
|
|
(gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty",
|
|
0)) / 2
|
|
) + 1
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
ans = ""
|
|
total_tokens = 0
|
|
|
|
try:
|
|
response = self.client.do(
|
|
model=self.model_name,
|
|
messages=history,
|
|
system=self.system,
|
|
stream=True,
|
|
**gen_conf
|
|
)
|
|
for resp in response:
|
|
resp = resp.body
|
|
ans += resp['result']
|
|
total_tokens = self.total_token_count(resp)
|
|
|
|
yield ans
|
|
|
|
except Exception as e:
|
|
return ans + "\n**ERROR**: " + str(e), 0
|
|
|
|
yield total_tokens
|
|
|
|
|
|
class AnthropicChat(Base):
|
|
def __init__(self, key, model_name, base_url=None):
|
|
import anthropic
|
|
|
|
self.client = anthropic.Anthropic(api_key=key)
|
|
self.model_name = model_name
|
|
self.system = ""
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
self.system = system
|
|
if "presence_penalty" in gen_conf:
|
|
del gen_conf["presence_penalty"]
|
|
if "frequency_penalty" in gen_conf:
|
|
del gen_conf["frequency_penalty"]
|
|
|
|
ans = ""
|
|
try:
|
|
response = self.client.messages.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
system=self.system,
|
|
stream=False,
|
|
**gen_conf,
|
|
).to_dict()
|
|
ans = response["content"][0]["text"]
|
|
if response["stop_reason"] == "max_tokens":
|
|
ans += (
|
|
"...\nFor the content length reason, it stopped, continue?"
|
|
if is_english([ans])
|
|
else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
)
|
|
return (
|
|
ans,
|
|
response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
|
|
)
|
|
except Exception as e:
|
|
return ans + "\n**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if system:
|
|
self.system = system
|
|
if "presence_penalty" in gen_conf:
|
|
del gen_conf["presence_penalty"]
|
|
if "frequency_penalty" in gen_conf:
|
|
del gen_conf["frequency_penalty"]
|
|
|
|
ans = ""
|
|
total_tokens = 0
|
|
try:
|
|
response = self.client.messages.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
system=self.system,
|
|
stream=True,
|
|
**gen_conf,
|
|
)
|
|
for res in response:
|
|
if res.type == 'content_block_delta':
|
|
text = res.delta.text
|
|
ans += text
|
|
total_tokens += num_tokens_from_string(text)
|
|
yield ans
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield total_tokens
|
|
|
|
|
|
class GoogleChat(Base):
|
|
def __init__(self, key, model_name, base_url=None):
|
|
from google.oauth2 import service_account
|
|
import base64
|
|
|
|
key = json.loads(key)
|
|
access_token = json.loads(
|
|
base64.b64decode(key.get("google_service_account_key", ""))
|
|
)
|
|
project_id = key.get("google_project_id", "")
|
|
region = key.get("google_region", "")
|
|
|
|
scopes = ["https://www.googleapis.com/auth/cloud-platform"]
|
|
self.model_name = model_name
|
|
self.system = ""
|
|
|
|
if "claude" in self.model_name:
|
|
from anthropic import AnthropicVertex
|
|
from google.auth.transport.requests import Request
|
|
|
|
if access_token:
|
|
credits = service_account.Credentials.from_service_account_info(
|
|
access_token, scopes=scopes
|
|
)
|
|
request = Request()
|
|
credits.refresh(request)
|
|
token = credits.token
|
|
self.client = AnthropicVertex(
|
|
region=region, project_id=project_id, access_token=token
|
|
)
|
|
else:
|
|
self.client = AnthropicVertex(region=region, project_id=project_id)
|
|
else:
|
|
from google.cloud import aiplatform
|
|
import vertexai.generative_models as glm
|
|
|
|
if access_token:
|
|
credits = service_account.Credentials.from_service_account_info(
|
|
access_token
|
|
)
|
|
aiplatform.init(
|
|
credentials=credits, project=project_id, location=region
|
|
)
|
|
else:
|
|
aiplatform.init(project=project_id, location=region)
|
|
self.client = glm.GenerativeModel(model_name=self.model_name)
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
if system:
|
|
self.system = system
|
|
|
|
if "claude" in self.model_name:
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
try:
|
|
response = self.client.messages.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
system=self.system,
|
|
stream=False,
|
|
**gen_conf,
|
|
).json()
|
|
ans = response["content"][0]["text"]
|
|
if response["stop_reason"] == "max_tokens":
|
|
ans += (
|
|
"...\nFor the content length reason, it stopped, continue?"
|
|
if is_english([ans])
|
|
else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
)
|
|
return (
|
|
ans,
|
|
response["usage"]["input_tokens"]
|
|
+ response["usage"]["output_tokens"],
|
|
)
|
|
except Exception as e:
|
|
return "\n**ERROR**: " + str(e), 0
|
|
else:
|
|
self.client._system_instruction = self.system
|
|
if "max_tokens" in gen_conf:
|
|
gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
|
|
for k in list(gen_conf.keys()):
|
|
if k not in ["temperature", "top_p", "max_output_tokens"]:
|
|
del gen_conf[k]
|
|
for item in history:
|
|
if "role" in item and item["role"] == "assistant":
|
|
item["role"] = "model"
|
|
if "content" in item:
|
|
item["parts"] = item.pop("content")
|
|
try:
|
|
response = self.client.generate_content(
|
|
history, generation_config=gen_conf
|
|
)
|
|
ans = response.text
|
|
return ans, response.usage_metadata.total_token_count
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
if system:
|
|
self.system = system
|
|
|
|
if "claude" in self.model_name:
|
|
if "max_tokens" in gen_conf:
|
|
del gen_conf["max_tokens"]
|
|
ans = ""
|
|
total_tokens = 0
|
|
try:
|
|
response = self.client.messages.create(
|
|
model=self.model_name,
|
|
messages=history,
|
|
system=self.system,
|
|
stream=True,
|
|
**gen_conf,
|
|
)
|
|
for res in response.iter_lines():
|
|
res = res.decode("utf-8")
|
|
if "content_block_delta" in res and "data" in res:
|
|
text = json.loads(res[6:])["delta"]["text"]
|
|
ans += text
|
|
total_tokens += num_tokens_from_string(text)
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield total_tokens
|
|
else:
|
|
self.client._system_instruction = self.system
|
|
if "max_tokens" in gen_conf:
|
|
gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
|
|
for k in list(gen_conf.keys()):
|
|
if k not in ["temperature", "top_p", "max_output_tokens"]:
|
|
del gen_conf[k]
|
|
for item in history:
|
|
if "role" in item and item["role"] == "assistant":
|
|
item["role"] = "model"
|
|
if "content" in item:
|
|
item["parts"] = item.pop("content")
|
|
ans = ""
|
|
try:
|
|
response = self.model.generate_content(
|
|
history, generation_config=gen_conf, stream=True
|
|
)
|
|
for resp in response:
|
|
ans += resp.text
|
|
yield ans
|
|
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield response._chunks[-1].usage_metadata.total_token_count
|
|
|
|
|
|
class GPUStackChat(Base):
|
|
def __init__(self, key=None, model_name="", base_url=""):
|
|
if not base_url:
|
|
raise ValueError("Local llm url cannot be None")
|
|
if base_url.split("/")[-1] != "v1-openai":
|
|
base_url = os.path.join(base_url, "v1-openai")
|
|
super().__init__(key, model_name, base_url)
|