mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-23 14:40:03 +08:00
707 lines
26 KiB
Python
707 lines
26 KiB
Python
#
|
|
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import logging
|
|
import copy
|
|
import time
|
|
import os
|
|
|
|
from huggingface_hub import snapshot_download
|
|
|
|
from api.utils.file_utils import get_project_base_directory
|
|
from rag.settings import PARALLEL_DEVICES
|
|
from .operators import * # noqa: F403
|
|
from . import operators
|
|
import math
|
|
import numpy as np
|
|
import cv2
|
|
import onnxruntime as ort
|
|
|
|
from .postprocess import build_post_process
|
|
|
|
loaded_models = {}
|
|
|
|
def transform(data, ops=None):
|
|
""" transform """
|
|
if ops is None:
|
|
ops = []
|
|
for op in ops:
|
|
data = op(data)
|
|
if data is None:
|
|
return None
|
|
return data
|
|
|
|
|
|
def create_operators(op_param_list, global_config=None):
|
|
"""
|
|
create operators based on the config
|
|
|
|
Args:
|
|
params(list): a dict list, used to create some operators
|
|
"""
|
|
assert isinstance(
|
|
op_param_list, list), ('operator config should be a list')
|
|
ops = []
|
|
for operator in op_param_list:
|
|
assert isinstance(operator,
|
|
dict) and len(operator) == 1, "yaml format error"
|
|
op_name = list(operator)[0]
|
|
param = {} if operator[op_name] is None else operator[op_name]
|
|
if global_config is not None:
|
|
param.update(global_config)
|
|
op = getattr(operators, op_name)(**param)
|
|
ops.append(op)
|
|
return ops
|
|
|
|
|
|
def load_model(model_dir, nm, device_id: int | None = None):
|
|
model_file_path = os.path.join(model_dir, nm + ".onnx")
|
|
model_cached_tag = model_file_path + str(device_id) if device_id is not None else model_file_path
|
|
|
|
global loaded_models
|
|
loaded_model = loaded_models.get(model_cached_tag)
|
|
if loaded_model:
|
|
logging.info(f"load_model {model_file_path} reuses cached model")
|
|
return loaded_model
|
|
|
|
if not os.path.exists(model_file_path):
|
|
raise ValueError("not find model file path {}".format(
|
|
model_file_path))
|
|
|
|
def cuda_is_available():
|
|
try:
|
|
import torch
|
|
if torch.cuda.is_available() and torch.cuda.device_count() > device_id:
|
|
return True
|
|
except Exception:
|
|
return False
|
|
return False
|
|
|
|
options = ort.SessionOptions()
|
|
options.enable_cpu_mem_arena = False
|
|
options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
|
|
options.intra_op_num_threads = 2
|
|
options.inter_op_num_threads = 2
|
|
|
|
# https://github.com/microsoft/onnxruntime/issues/9509#issuecomment-951546580
|
|
# Shrink GPU memory after execution
|
|
run_options = ort.RunOptions()
|
|
if cuda_is_available():
|
|
cuda_provider_options = {
|
|
"device_id": device_id, # Use specific GPU
|
|
"gpu_mem_limit": 512 * 1024 * 1024, # Limit gpu memory
|
|
"arena_extend_strategy": "kNextPowerOfTwo", # gpu memory allocation strategy
|
|
}
|
|
sess = ort.InferenceSession(
|
|
model_file_path,
|
|
options=options,
|
|
providers=['CUDAExecutionProvider'],
|
|
provider_options=[cuda_provider_options]
|
|
)
|
|
run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "gpu:" + str(device_id))
|
|
logging.info(f"load_model {model_file_path} uses GPU")
|
|
else:
|
|
sess = ort.InferenceSession(
|
|
model_file_path,
|
|
options=options,
|
|
providers=['CPUExecutionProvider'])
|
|
run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "cpu")
|
|
logging.info(f"load_model {model_file_path} uses CPU")
|
|
loaded_model = (sess, run_options)
|
|
loaded_models[model_cached_tag] = loaded_model
|
|
return loaded_model
|
|
|
|
|
|
class TextRecognizer:
|
|
def __init__(self, model_dir, device_id: int | None = None):
|
|
self.rec_image_shape = [int(v) for v in "3, 48, 320".split(",")]
|
|
self.rec_batch_num = 16
|
|
postprocess_params = {
|
|
'name': 'CTCLabelDecode',
|
|
"character_dict_path": os.path.join(model_dir, "ocr.res"),
|
|
"use_space_char": True
|
|
}
|
|
self.postprocess_op = build_post_process(postprocess_params)
|
|
self.predictor, self.run_options = load_model(model_dir, 'rec', device_id)
|
|
self.input_tensor = self.predictor.get_inputs()[0]
|
|
|
|
def resize_norm_img(self, img, max_wh_ratio):
|
|
imgC, imgH, imgW = self.rec_image_shape
|
|
|
|
assert imgC == img.shape[2]
|
|
imgW = int((imgH * max_wh_ratio))
|
|
w = self.input_tensor.shape[3:][0]
|
|
if isinstance(w, str):
|
|
pass
|
|
elif w is not None and w > 0:
|
|
imgW = w
|
|
h, w = img.shape[:2]
|
|
ratio = w / float(h)
|
|
if math.ceil(imgH * ratio) > imgW:
|
|
resized_w = imgW
|
|
else:
|
|
resized_w = int(math.ceil(imgH * ratio))
|
|
|
|
resized_image = cv2.resize(img, (resized_w, imgH))
|
|
resized_image = resized_image.astype('float32')
|
|
resized_image = resized_image.transpose((2, 0, 1)) / 255
|
|
resized_image -= 0.5
|
|
resized_image /= 0.5
|
|
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
|
|
padding_im[:, :, 0:resized_w] = resized_image
|
|
return padding_im
|
|
|
|
def resize_norm_img_vl(self, img, image_shape):
|
|
|
|
imgC, imgH, imgW = image_shape
|
|
img = img[:, :, ::-1] # bgr2rgb
|
|
resized_image = cv2.resize(
|
|
img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
|
|
resized_image = resized_image.astype('float32')
|
|
resized_image = resized_image.transpose((2, 0, 1)) / 255
|
|
return resized_image
|
|
|
|
def resize_norm_img_srn(self, img, image_shape):
|
|
imgC, imgH, imgW = image_shape
|
|
|
|
img_black = np.zeros((imgH, imgW))
|
|
im_hei = img.shape[0]
|
|
im_wid = img.shape[1]
|
|
|
|
if im_wid <= im_hei * 1:
|
|
img_new = cv2.resize(img, (imgH * 1, imgH))
|
|
elif im_wid <= im_hei * 2:
|
|
img_new = cv2.resize(img, (imgH * 2, imgH))
|
|
elif im_wid <= im_hei * 3:
|
|
img_new = cv2.resize(img, (imgH * 3, imgH))
|
|
else:
|
|
img_new = cv2.resize(img, (imgW, imgH))
|
|
|
|
img_np = np.asarray(img_new)
|
|
img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
|
|
img_black[:, 0:img_np.shape[1]] = img_np
|
|
img_black = img_black[:, :, np.newaxis]
|
|
|
|
row, col, c = img_black.shape
|
|
c = 1
|
|
|
|
return np.reshape(img_black, (c, row, col)).astype(np.float32)
|
|
|
|
def srn_other_inputs(self, image_shape, num_heads, max_text_length):
|
|
|
|
imgC, imgH, imgW = image_shape
|
|
feature_dim = int((imgH / 8) * (imgW / 8))
|
|
|
|
encoder_word_pos = np.array(range(0, feature_dim)).reshape(
|
|
(feature_dim, 1)).astype('int64')
|
|
gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
|
|
(max_text_length, 1)).astype('int64')
|
|
|
|
gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
|
|
gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
|
|
[-1, 1, max_text_length, max_text_length])
|
|
gsrm_slf_attn_bias1 = np.tile(
|
|
gsrm_slf_attn_bias1,
|
|
[1, num_heads, 1, 1]).astype('float32') * [-1e9]
|
|
|
|
gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
|
|
[-1, 1, max_text_length, max_text_length])
|
|
gsrm_slf_attn_bias2 = np.tile(
|
|
gsrm_slf_attn_bias2,
|
|
[1, num_heads, 1, 1]).astype('float32') * [-1e9]
|
|
|
|
encoder_word_pos = encoder_word_pos[np.newaxis, :]
|
|
gsrm_word_pos = gsrm_word_pos[np.newaxis, :]
|
|
|
|
return [
|
|
encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
|
|
gsrm_slf_attn_bias2
|
|
]
|
|
|
|
def process_image_srn(self, img, image_shape, num_heads, max_text_length):
|
|
norm_img = self.resize_norm_img_srn(img, image_shape)
|
|
norm_img = norm_img[np.newaxis, :]
|
|
|
|
[encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
|
|
self.srn_other_inputs(image_shape, num_heads, max_text_length)
|
|
|
|
gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
|
|
gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
|
|
encoder_word_pos = encoder_word_pos.astype(np.int64)
|
|
gsrm_word_pos = gsrm_word_pos.astype(np.int64)
|
|
|
|
return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
|
|
gsrm_slf_attn_bias2)
|
|
|
|
def resize_norm_img_sar(self, img, image_shape,
|
|
width_downsample_ratio=0.25):
|
|
imgC, imgH, imgW_min, imgW_max = image_shape
|
|
h = img.shape[0]
|
|
w = img.shape[1]
|
|
valid_ratio = 1.0
|
|
# make sure new_width is an integral multiple of width_divisor.
|
|
width_divisor = int(1 / width_downsample_ratio)
|
|
# resize
|
|
ratio = w / float(h)
|
|
resize_w = math.ceil(imgH * ratio)
|
|
if resize_w % width_divisor != 0:
|
|
resize_w = round(resize_w / width_divisor) * width_divisor
|
|
if imgW_min is not None:
|
|
resize_w = max(imgW_min, resize_w)
|
|
if imgW_max is not None:
|
|
valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
|
|
resize_w = min(imgW_max, resize_w)
|
|
resized_image = cv2.resize(img, (resize_w, imgH))
|
|
resized_image = resized_image.astype('float32')
|
|
# norm
|
|
if image_shape[0] == 1:
|
|
resized_image = resized_image / 255
|
|
resized_image = resized_image[np.newaxis, :]
|
|
else:
|
|
resized_image = resized_image.transpose((2, 0, 1)) / 255
|
|
resized_image -= 0.5
|
|
resized_image /= 0.5
|
|
resize_shape = resized_image.shape
|
|
padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
|
|
padding_im[:, :, 0:resize_w] = resized_image
|
|
pad_shape = padding_im.shape
|
|
|
|
return padding_im, resize_shape, pad_shape, valid_ratio
|
|
|
|
def resize_norm_img_spin(self, img):
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
# return padding_im
|
|
img = cv2.resize(img, tuple([100, 32]), cv2.INTER_CUBIC)
|
|
img = np.array(img, np.float32)
|
|
img = np.expand_dims(img, -1)
|
|
img = img.transpose((2, 0, 1))
|
|
mean = [127.5]
|
|
std = [127.5]
|
|
mean = np.array(mean, dtype=np.float32)
|
|
std = np.array(std, dtype=np.float32)
|
|
mean = np.float32(mean.reshape(1, -1))
|
|
stdinv = 1 / np.float32(std.reshape(1, -1))
|
|
img -= mean
|
|
img *= stdinv
|
|
return img
|
|
|
|
def resize_norm_img_svtr(self, img, image_shape):
|
|
|
|
imgC, imgH, imgW = image_shape
|
|
resized_image = cv2.resize(
|
|
img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
|
|
resized_image = resized_image.astype('float32')
|
|
resized_image = resized_image.transpose((2, 0, 1)) / 255
|
|
resized_image -= 0.5
|
|
resized_image /= 0.5
|
|
return resized_image
|
|
|
|
def resize_norm_img_abinet(self, img, image_shape):
|
|
|
|
imgC, imgH, imgW = image_shape
|
|
|
|
resized_image = cv2.resize(
|
|
img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
|
|
resized_image = resized_image.astype('float32')
|
|
resized_image = resized_image / 255.
|
|
|
|
mean = np.array([0.485, 0.456, 0.406])
|
|
std = np.array([0.229, 0.224, 0.225])
|
|
resized_image = (
|
|
resized_image - mean[None, None, ...]) / std[None, None, ...]
|
|
resized_image = resized_image.transpose((2, 0, 1))
|
|
resized_image = resized_image.astype('float32')
|
|
|
|
return resized_image
|
|
|
|
def norm_img_can(self, img, image_shape):
|
|
|
|
img = cv2.cvtColor(
|
|
img, cv2.COLOR_BGR2GRAY) # CAN only predict gray scale image
|
|
|
|
if self.rec_image_shape[0] == 1:
|
|
h, w = img.shape
|
|
_, imgH, imgW = self.rec_image_shape
|
|
if h < imgH or w < imgW:
|
|
padding_h = max(imgH - h, 0)
|
|
padding_w = max(imgW - w, 0)
|
|
img_padded = np.pad(img, ((0, padding_h), (0, padding_w)),
|
|
'constant',
|
|
constant_values=(255))
|
|
img = img_padded
|
|
|
|
img = np.expand_dims(img, 0) / 255.0 # h,w,c -> c,h,w
|
|
img = img.astype('float32')
|
|
|
|
return img
|
|
|
|
def __call__(self, img_list):
|
|
img_num = len(img_list)
|
|
# Calculate the aspect ratio of all text bars
|
|
width_list = []
|
|
for img in img_list:
|
|
width_list.append(img.shape[1] / float(img.shape[0]))
|
|
# Sorting can speed up the recognition process
|
|
indices = np.argsort(np.array(width_list))
|
|
rec_res = [['', 0.0]] * img_num
|
|
batch_num = self.rec_batch_num
|
|
st = time.time()
|
|
|
|
for beg_img_no in range(0, img_num, batch_num):
|
|
end_img_no = min(img_num, beg_img_no + batch_num)
|
|
norm_img_batch = []
|
|
imgC, imgH, imgW = self.rec_image_shape[:3]
|
|
max_wh_ratio = imgW / imgH
|
|
# max_wh_ratio = 0
|
|
for ino in range(beg_img_no, end_img_no):
|
|
h, w = img_list[indices[ino]].shape[0:2]
|
|
wh_ratio = w * 1.0 / h
|
|
max_wh_ratio = max(max_wh_ratio, wh_ratio)
|
|
for ino in range(beg_img_no, end_img_no):
|
|
norm_img = self.resize_norm_img(img_list[indices[ino]],
|
|
max_wh_ratio)
|
|
norm_img = norm_img[np.newaxis, :]
|
|
norm_img_batch.append(norm_img)
|
|
norm_img_batch = np.concatenate(norm_img_batch)
|
|
norm_img_batch = norm_img_batch.copy()
|
|
|
|
input_dict = {}
|
|
input_dict[self.input_tensor.name] = norm_img_batch
|
|
for i in range(100000):
|
|
try:
|
|
outputs = self.predictor.run(None, input_dict, self.run_options)
|
|
break
|
|
except Exception as e:
|
|
if i >= 3:
|
|
raise e
|
|
time.sleep(5)
|
|
preds = outputs[0]
|
|
rec_result = self.postprocess_op(preds)
|
|
for rno in range(len(rec_result)):
|
|
rec_res[indices[beg_img_no + rno]] = rec_result[rno]
|
|
|
|
return rec_res, time.time() - st
|
|
|
|
|
|
class TextDetector:
|
|
def __init__(self, model_dir, device_id: int | None = None):
|
|
pre_process_list = [{
|
|
'DetResizeForTest': {
|
|
'limit_side_len': 960,
|
|
'limit_type': "max",
|
|
}
|
|
}, {
|
|
'NormalizeImage': {
|
|
'std': [0.229, 0.224, 0.225],
|
|
'mean': [0.485, 0.456, 0.406],
|
|
'scale': '1./255.',
|
|
'order': 'hwc'
|
|
}
|
|
}, {
|
|
'ToCHWImage': None
|
|
}, {
|
|
'KeepKeys': {
|
|
'keep_keys': ['image', 'shape']
|
|
}
|
|
}]
|
|
postprocess_params = {"name": "DBPostProcess", "thresh": 0.3, "box_thresh": 0.5, "max_candidates": 1000,
|
|
"unclip_ratio": 1.5, "use_dilation": False, "score_mode": "fast", "box_type": "quad"}
|
|
|
|
self.postprocess_op = build_post_process(postprocess_params)
|
|
self.predictor, self.run_options = load_model(model_dir, 'det', device_id)
|
|
self.input_tensor = self.predictor.get_inputs()[0]
|
|
|
|
img_h, img_w = self.input_tensor.shape[2:]
|
|
if isinstance(img_h, str) or isinstance(img_w, str):
|
|
pass
|
|
elif img_h is not None and img_w is not None and img_h > 0 and img_w > 0:
|
|
pre_process_list[0] = {
|
|
'DetResizeForTest': {
|
|
'image_shape': [img_h, img_w]
|
|
}
|
|
}
|
|
self.preprocess_op = create_operators(pre_process_list)
|
|
|
|
def order_points_clockwise(self, pts):
|
|
rect = np.zeros((4, 2), dtype="float32")
|
|
s = pts.sum(axis=1)
|
|
rect[0] = pts[np.argmin(s)]
|
|
rect[2] = pts[np.argmax(s)]
|
|
tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0)
|
|
diff = np.diff(np.array(tmp), axis=1)
|
|
rect[1] = tmp[np.argmin(diff)]
|
|
rect[3] = tmp[np.argmax(diff)]
|
|
return rect
|
|
|
|
def clip_det_res(self, points, img_height, img_width):
|
|
for pno in range(points.shape[0]):
|
|
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
|
|
points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
|
|
return points
|
|
|
|
def filter_tag_det_res(self, dt_boxes, image_shape):
|
|
img_height, img_width = image_shape[0:2]
|
|
dt_boxes_new = []
|
|
for box in dt_boxes:
|
|
if isinstance(box, list):
|
|
box = np.array(box)
|
|
box = self.order_points_clockwise(box)
|
|
box = self.clip_det_res(box, img_height, img_width)
|
|
rect_width = int(np.linalg.norm(box[0] - box[1]))
|
|
rect_height = int(np.linalg.norm(box[0] - box[3]))
|
|
if rect_width <= 3 or rect_height <= 3:
|
|
continue
|
|
dt_boxes_new.append(box)
|
|
dt_boxes = np.array(dt_boxes_new)
|
|
return dt_boxes
|
|
|
|
def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
|
|
img_height, img_width = image_shape[0:2]
|
|
dt_boxes_new = []
|
|
for box in dt_boxes:
|
|
if isinstance(box, list):
|
|
box = np.array(box)
|
|
box = self.clip_det_res(box, img_height, img_width)
|
|
dt_boxes_new.append(box)
|
|
dt_boxes = np.array(dt_boxes_new)
|
|
return dt_boxes
|
|
|
|
def __call__(self, img):
|
|
ori_im = img.copy()
|
|
data = {'image': img}
|
|
|
|
st = time.time()
|
|
data = transform(data, self.preprocess_op)
|
|
img, shape_list = data
|
|
if img is None:
|
|
return None, 0
|
|
img = np.expand_dims(img, axis=0)
|
|
shape_list = np.expand_dims(shape_list, axis=0)
|
|
img = img.copy()
|
|
input_dict = {}
|
|
input_dict[self.input_tensor.name] = img
|
|
for i in range(100000):
|
|
try:
|
|
outputs = self.predictor.run(None, input_dict, self.run_options)
|
|
break
|
|
except Exception as e:
|
|
if i >= 3:
|
|
raise e
|
|
time.sleep(5)
|
|
|
|
post_result = self.postprocess_op({"maps": outputs[0]}, shape_list)
|
|
dt_boxes = post_result[0]['points']
|
|
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
|
|
|
|
return dt_boxes, time.time() - st
|
|
|
|
|
|
class OCR:
|
|
def __init__(self, model_dir=None):
|
|
"""
|
|
If you have trouble downloading HuggingFace models, -_^ this might help!!
|
|
|
|
For Linux:
|
|
export HF_ENDPOINT=https://hf-mirror.com
|
|
|
|
For Windows:
|
|
Good luck
|
|
^_-
|
|
|
|
"""
|
|
if not model_dir:
|
|
try:
|
|
model_dir = os.path.join(
|
|
get_project_base_directory(),
|
|
"rag/res/deepdoc")
|
|
|
|
# Append muti-gpus task to the list
|
|
if PARALLEL_DEVICES is not None and PARALLEL_DEVICES > 0:
|
|
self.text_detector = []
|
|
self.text_recognizer = []
|
|
for device_id in range(PARALLEL_DEVICES):
|
|
self.text_detector.append(TextDetector(model_dir, device_id))
|
|
self.text_recognizer.append(TextRecognizer(model_dir, device_id))
|
|
else:
|
|
self.text_detector = [TextDetector(model_dir, 0)]
|
|
self.text_recognizer = [TextRecognizer(model_dir, 0)]
|
|
|
|
except Exception:
|
|
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
|
|
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
|
|
local_dir_use_symlinks=False)
|
|
|
|
if PARALLEL_DEVICES is not None:
|
|
assert PARALLEL_DEVICES > 0, "Number of devices must be >= 1"
|
|
self.text_detector = []
|
|
self.text_recognizer = []
|
|
for device_id in range(PARALLEL_DEVICES):
|
|
self.text_detector.append(TextDetector(model_dir, device_id))
|
|
self.text_recognizer.append(TextRecognizer(model_dir, device_id))
|
|
else:
|
|
self.text_detector = [TextDetector(model_dir, 0)]
|
|
self.text_recognizer = [TextRecognizer(model_dir, 0)]
|
|
|
|
self.drop_score = 0.5
|
|
self.crop_image_res_index = 0
|
|
|
|
def get_rotate_crop_image(self, img, points):
|
|
'''
|
|
img_height, img_width = img.shape[0:2]
|
|
left = int(np.min(points[:, 0]))
|
|
right = int(np.max(points[:, 0]))
|
|
top = int(np.min(points[:, 1]))
|
|
bottom = int(np.max(points[:, 1]))
|
|
img_crop = img[top:bottom, left:right, :].copy()
|
|
points[:, 0] = points[:, 0] - left
|
|
points[:, 1] = points[:, 1] - top
|
|
'''
|
|
assert len(points) == 4, "shape of points must be 4*2"
|
|
img_crop_width = int(
|
|
max(
|
|
np.linalg.norm(points[0] - points[1]),
|
|
np.linalg.norm(points[2] - points[3])))
|
|
img_crop_height = int(
|
|
max(
|
|
np.linalg.norm(points[0] - points[3]),
|
|
np.linalg.norm(points[1] - points[2])))
|
|
pts_std = np.float32([[0, 0], [img_crop_width, 0],
|
|
[img_crop_width, img_crop_height],
|
|
[0, img_crop_height]])
|
|
M = cv2.getPerspectiveTransform(points, pts_std)
|
|
dst_img = cv2.warpPerspective(
|
|
img,
|
|
M, (img_crop_width, img_crop_height),
|
|
borderMode=cv2.BORDER_REPLICATE,
|
|
flags=cv2.INTER_CUBIC)
|
|
dst_img_height, dst_img_width = dst_img.shape[0:2]
|
|
if dst_img_height * 1.0 / dst_img_width >= 1.5:
|
|
dst_img = np.rot90(dst_img)
|
|
return dst_img
|
|
|
|
def sorted_boxes(self, dt_boxes):
|
|
"""
|
|
Sort text boxes in order from top to bottom, left to right
|
|
args:
|
|
dt_boxes(array):detected text boxes with shape [4, 2]
|
|
return:
|
|
sorted boxes(array) with shape [4, 2]
|
|
"""
|
|
num_boxes = dt_boxes.shape[0]
|
|
sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
|
|
_boxes = list(sorted_boxes)
|
|
|
|
for i in range(num_boxes - 1):
|
|
for j in range(i, -1, -1):
|
|
if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and \
|
|
(_boxes[j + 1][0][0] < _boxes[j][0][0]):
|
|
tmp = _boxes[j]
|
|
_boxes[j] = _boxes[j + 1]
|
|
_boxes[j + 1] = tmp
|
|
else:
|
|
break
|
|
return _boxes
|
|
|
|
def detect(self, img, device_id: int | None = None):
|
|
if device_id is None:
|
|
device_id = 0
|
|
|
|
time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}
|
|
|
|
if img is None:
|
|
return None, None, time_dict
|
|
|
|
start = time.time()
|
|
dt_boxes, elapse = self.text_detector[device_id](img)
|
|
time_dict['det'] = elapse
|
|
|
|
if dt_boxes is None:
|
|
end = time.time()
|
|
time_dict['all'] = end - start
|
|
return None, None, time_dict
|
|
|
|
return zip(self.sorted_boxes(dt_boxes), [
|
|
("", 0) for _ in range(len(dt_boxes))])
|
|
|
|
def recognize(self, ori_im, box, device_id: int | None = None):
|
|
if device_id is None:
|
|
device_id = 0
|
|
|
|
img_crop = self.get_rotate_crop_image(ori_im, box)
|
|
|
|
rec_res, elapse = self.text_recognizer[device_id]([img_crop])
|
|
text, score = rec_res[0]
|
|
if score < self.drop_score:
|
|
return ""
|
|
return text
|
|
|
|
def recognize_batch(self, img_list, device_id: int | None = None):
|
|
if device_id is None:
|
|
device_id = 0
|
|
rec_res, elapse = self.text_recognizer[device_id](img_list)
|
|
texts = []
|
|
for i in range(len(rec_res)):
|
|
text, score = rec_res[i]
|
|
if score < self.drop_score:
|
|
text = ""
|
|
texts.append(text)
|
|
return texts
|
|
|
|
def __call__(self, img, device_id = 0, cls=True):
|
|
time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}
|
|
if device_id is None:
|
|
device_id = 0
|
|
|
|
if img is None:
|
|
return None, None, time_dict
|
|
|
|
start = time.time()
|
|
ori_im = img.copy()
|
|
dt_boxes, elapse = self.text_detector[device_id](img)
|
|
time_dict['det'] = elapse
|
|
|
|
if dt_boxes is None:
|
|
end = time.time()
|
|
time_dict['all'] = end - start
|
|
return None, None, time_dict
|
|
|
|
img_crop_list = []
|
|
|
|
dt_boxes = self.sorted_boxes(dt_boxes)
|
|
|
|
for bno in range(len(dt_boxes)):
|
|
tmp_box = copy.deepcopy(dt_boxes[bno])
|
|
img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
|
|
img_crop_list.append(img_crop)
|
|
|
|
rec_res, elapse = self.text_recognizer[device_id](img_crop_list)
|
|
|
|
time_dict['rec'] = elapse
|
|
|
|
filter_boxes, filter_rec_res = [], []
|
|
for box, rec_result in zip(dt_boxes, rec_res):
|
|
text, score = rec_result
|
|
if score >= self.drop_score:
|
|
filter_boxes.append(box)
|
|
filter_rec_res.append(rec_result)
|
|
end = time.time()
|
|
time_dict['all'] = end - start
|
|
|
|
# for bno in range(len(img_crop_list)):
|
|
# print(f"{bno}, {rec_res[bno]}")
|
|
|
|
return list(zip([a.tolist() for a in filter_boxes], filter_rec_res))
|