mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-22 06:00:00 +08:00

### What problem does this PR solve? #4445 ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue)
595 lines
22 KiB
Python
595 lines
22 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import logging
|
|
import xxhash
|
|
import json
|
|
import random
|
|
import re
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from copy import deepcopy
|
|
from datetime import datetime
|
|
from io import BytesIO
|
|
|
|
from peewee import fn
|
|
|
|
from api.db.db_utils import bulk_insert_into_db
|
|
from api import settings
|
|
from api.utils import current_timestamp, get_format_time, get_uuid
|
|
from graphrag.mind_map_extractor import MindMapExtractor
|
|
from rag.settings import SVR_QUEUE_NAME
|
|
from rag.utils.storage_factory import STORAGE_IMPL
|
|
from rag.nlp import search, rag_tokenizer
|
|
|
|
from api.db import FileType, TaskStatus, ParserType, LLMType
|
|
from api.db.db_models import DB, Knowledgebase, Tenant, Task, UserTenant
|
|
from api.db.db_models import Document
|
|
from api.db.services.common_service import CommonService
|
|
from api.db.services.knowledgebase_service import KnowledgebaseService
|
|
from api.db import StatusEnum
|
|
from rag.utils.redis_conn import REDIS_CONN
|
|
|
|
|
|
class DocumentService(CommonService):
|
|
model = Document
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_list(cls, kb_id, page_number, items_per_page,
|
|
orderby, desc, keywords, id, name):
|
|
docs = cls.model.select().where(cls.model.kb_id == kb_id)
|
|
if id:
|
|
docs = docs.where(
|
|
cls.model.id == id)
|
|
if name:
|
|
docs = docs.where(
|
|
cls.model.name == name
|
|
)
|
|
if keywords:
|
|
docs = docs.where(
|
|
fn.LOWER(cls.model.name).contains(keywords.lower())
|
|
)
|
|
if desc:
|
|
docs = docs.order_by(cls.model.getter_by(orderby).desc())
|
|
else:
|
|
docs = docs.order_by(cls.model.getter_by(orderby).asc())
|
|
|
|
count = docs.count()
|
|
docs = docs.paginate(page_number, items_per_page)
|
|
return list(docs.dicts()), count
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_by_kb_id(cls, kb_id, page_number, items_per_page,
|
|
orderby, desc, keywords):
|
|
if keywords:
|
|
docs = cls.model.select().where(
|
|
(cls.model.kb_id == kb_id),
|
|
(fn.LOWER(cls.model.name).contains(keywords.lower()))
|
|
)
|
|
else:
|
|
docs = cls.model.select().where(cls.model.kb_id == kb_id)
|
|
count = docs.count()
|
|
if desc:
|
|
docs = docs.order_by(cls.model.getter_by(orderby).desc())
|
|
else:
|
|
docs = docs.order_by(cls.model.getter_by(orderby).asc())
|
|
|
|
docs = docs.paginate(page_number, items_per_page)
|
|
|
|
return list(docs.dicts()), count
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def insert(cls, doc):
|
|
if not cls.save(**doc):
|
|
raise RuntimeError("Database error (Document)!")
|
|
e, kb = KnowledgebaseService.get_by_id(doc["kb_id"])
|
|
if not KnowledgebaseService.update_by_id(
|
|
kb.id, {"doc_num": kb.doc_num + 1}):
|
|
raise RuntimeError("Database error (Knowledgebase)!")
|
|
return Document(**doc)
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def remove_document(cls, doc, tenant_id):
|
|
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), doc.kb_id)
|
|
cls.clear_chunk_num(doc.id)
|
|
return cls.delete_by_id(doc.id)
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_newly_uploaded(cls):
|
|
fields = [
|
|
cls.model.id,
|
|
cls.model.kb_id,
|
|
cls.model.parser_id,
|
|
cls.model.parser_config,
|
|
cls.model.name,
|
|
cls.model.type,
|
|
cls.model.location,
|
|
cls.model.size,
|
|
Knowledgebase.tenant_id,
|
|
Tenant.embd_id,
|
|
Tenant.img2txt_id,
|
|
Tenant.asr_id,
|
|
cls.model.update_time]
|
|
docs = cls.model.select(*fields) \
|
|
.join(Knowledgebase, on=(cls.model.kb_id == Knowledgebase.id)) \
|
|
.join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id)) \
|
|
.where(
|
|
cls.model.status == StatusEnum.VALID.value,
|
|
~(cls.model.type == FileType.VIRTUAL.value),
|
|
cls.model.progress == 0,
|
|
cls.model.update_time >= current_timestamp() - 1000 * 600,
|
|
cls.model.run == TaskStatus.RUNNING.value) \
|
|
.order_by(cls.model.update_time.asc())
|
|
return list(docs.dicts())
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_unfinished_docs(cls):
|
|
fields = [cls.model.id, cls.model.process_begin_at, cls.model.parser_config, cls.model.progress_msg,
|
|
cls.model.run]
|
|
docs = cls.model.select(*fields) \
|
|
.where(
|
|
cls.model.status == StatusEnum.VALID.value,
|
|
~(cls.model.type == FileType.VIRTUAL.value),
|
|
cls.model.progress < 1,
|
|
cls.model.progress > 0)
|
|
return list(docs.dicts())
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def increment_chunk_num(cls, doc_id, kb_id, token_num, chunk_num, duation):
|
|
num = cls.model.update(token_num=cls.model.token_num + token_num,
|
|
chunk_num=cls.model.chunk_num + chunk_num,
|
|
process_duation=cls.model.process_duation + duation).where(
|
|
cls.model.id == doc_id).execute()
|
|
if num == 0:
|
|
raise LookupError(
|
|
"Document not found which is supposed to be there")
|
|
num = Knowledgebase.update(
|
|
token_num=Knowledgebase.token_num +
|
|
token_num,
|
|
chunk_num=Knowledgebase.chunk_num +
|
|
chunk_num).where(
|
|
Knowledgebase.id == kb_id).execute()
|
|
return num
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def decrement_chunk_num(cls, doc_id, kb_id, token_num, chunk_num, duation):
|
|
num = cls.model.update(token_num=cls.model.token_num - token_num,
|
|
chunk_num=cls.model.chunk_num - chunk_num,
|
|
process_duation=cls.model.process_duation + duation).where(
|
|
cls.model.id == doc_id).execute()
|
|
if num == 0:
|
|
raise LookupError(
|
|
"Document not found which is supposed to be there")
|
|
num = Knowledgebase.update(
|
|
token_num=Knowledgebase.token_num -
|
|
token_num,
|
|
chunk_num=Knowledgebase.chunk_num -
|
|
chunk_num
|
|
).where(
|
|
Knowledgebase.id == kb_id).execute()
|
|
return num
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def clear_chunk_num(cls, doc_id):
|
|
doc = cls.model.get_by_id(doc_id)
|
|
assert doc, "Can't fine document in database."
|
|
|
|
num = Knowledgebase.update(
|
|
token_num=Knowledgebase.token_num -
|
|
doc.token_num,
|
|
chunk_num=Knowledgebase.chunk_num -
|
|
doc.chunk_num,
|
|
doc_num=Knowledgebase.doc_num - 1
|
|
).where(
|
|
Knowledgebase.id == doc.kb_id).execute()
|
|
return num
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_tenant_id(cls, doc_id):
|
|
docs = cls.model.select(
|
|
Knowledgebase.tenant_id).join(
|
|
Knowledgebase, on=(
|
|
Knowledgebase.id == cls.model.kb_id)).where(
|
|
cls.model.id == doc_id, Knowledgebase.status == StatusEnum.VALID.value)
|
|
docs = docs.dicts()
|
|
if not docs:
|
|
return
|
|
return docs[0]["tenant_id"]
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_knowledgebase_id(cls, doc_id):
|
|
docs = cls.model.select(cls.model.kb_id).where(cls.model.id == doc_id)
|
|
docs = docs.dicts()
|
|
if not docs:
|
|
return
|
|
return docs[0]["kb_id"]
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_tenant_id_by_name(cls, name):
|
|
docs = cls.model.select(
|
|
Knowledgebase.tenant_id).join(
|
|
Knowledgebase, on=(
|
|
Knowledgebase.id == cls.model.kb_id)).where(
|
|
cls.model.name == name, Knowledgebase.status == StatusEnum.VALID.value)
|
|
docs = docs.dicts()
|
|
if not docs:
|
|
return
|
|
return docs[0]["tenant_id"]
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def accessible(cls, doc_id, user_id):
|
|
docs = cls.model.select(
|
|
cls.model.id).join(
|
|
Knowledgebase, on=(
|
|
Knowledgebase.id == cls.model.kb_id)
|
|
).join(UserTenant, on=(UserTenant.tenant_id == Knowledgebase.tenant_id)
|
|
).where(cls.model.id == doc_id, UserTenant.user_id == user_id).paginate(0, 1)
|
|
docs = docs.dicts()
|
|
if not docs:
|
|
return False
|
|
return True
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def accessible4deletion(cls, doc_id, user_id):
|
|
docs = cls.model.select(
|
|
cls.model.id).join(
|
|
Knowledgebase, on=(
|
|
Knowledgebase.id == cls.model.kb_id)
|
|
).where(cls.model.id == doc_id, Knowledgebase.created_by == user_id).paginate(0, 1)
|
|
docs = docs.dicts()
|
|
if not docs:
|
|
return False
|
|
return True
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_embd_id(cls, doc_id):
|
|
docs = cls.model.select(
|
|
Knowledgebase.embd_id).join(
|
|
Knowledgebase, on=(
|
|
Knowledgebase.id == cls.model.kb_id)).where(
|
|
cls.model.id == doc_id, Knowledgebase.status == StatusEnum.VALID.value)
|
|
docs = docs.dicts()
|
|
if not docs:
|
|
return
|
|
return docs[0]["embd_id"]
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_chunking_config(cls, doc_id):
|
|
configs = (
|
|
cls.model.select(
|
|
cls.model.id,
|
|
cls.model.kb_id,
|
|
cls.model.parser_id,
|
|
cls.model.parser_config,
|
|
Knowledgebase.language,
|
|
Knowledgebase.embd_id,
|
|
Tenant.id.alias("tenant_id"),
|
|
Tenant.img2txt_id,
|
|
Tenant.asr_id,
|
|
Tenant.llm_id,
|
|
)
|
|
.join(Knowledgebase, on=(cls.model.kb_id == Knowledgebase.id))
|
|
.join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id))
|
|
.where(cls.model.id == doc_id)
|
|
)
|
|
configs = configs.dicts()
|
|
if not configs:
|
|
return None
|
|
return configs[0]
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_doc_id_by_doc_name(cls, doc_name):
|
|
fields = [cls.model.id]
|
|
doc_id = cls.model.select(*fields) \
|
|
.where(cls.model.name == doc_name)
|
|
doc_id = doc_id.dicts()
|
|
if not doc_id:
|
|
return
|
|
return doc_id[0]["id"]
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_thumbnails(cls, docids):
|
|
fields = [cls.model.id, cls.model.kb_id, cls.model.thumbnail]
|
|
return list(cls.model.select(
|
|
*fields).where(cls.model.id.in_(docids)).dicts())
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def update_parser_config(cls, id, config):
|
|
e, d = cls.get_by_id(id)
|
|
if not e:
|
|
raise LookupError(f"Document({id}) not found.")
|
|
|
|
def dfs_update(old, new):
|
|
for k, v in new.items():
|
|
if k not in old:
|
|
old[k] = v
|
|
continue
|
|
if isinstance(v, dict):
|
|
assert isinstance(old[k], dict)
|
|
dfs_update(old[k], v)
|
|
else:
|
|
old[k] = v
|
|
|
|
dfs_update(d.parser_config, config)
|
|
if not config.get("raptor") and d.parser_config.get("raptor"):
|
|
del d.parser_config["raptor"]
|
|
cls.update_by_id(id, {"parser_config": d.parser_config})
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_doc_count(cls, tenant_id):
|
|
docs = cls.model.select(cls.model.id).join(Knowledgebase,
|
|
on=(Knowledgebase.id == cls.model.kb_id)).where(
|
|
Knowledgebase.tenant_id == tenant_id)
|
|
return len(docs)
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def begin2parse(cls, docid):
|
|
cls.update_by_id(
|
|
docid, {"progress": random.random() * 1 / 100.,
|
|
"progress_msg": "Task is queued...",
|
|
"process_begin_at": get_format_time()
|
|
})
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def update_progress(cls):
|
|
docs = cls.get_unfinished_docs()
|
|
for d in docs:
|
|
try:
|
|
tsks = Task.query(doc_id=d["id"], order_by=Task.create_time)
|
|
if not tsks:
|
|
continue
|
|
msg = []
|
|
prg = 0
|
|
finished = True
|
|
bad = 0
|
|
e, doc = DocumentService.get_by_id(d["id"])
|
|
status = doc.run # TaskStatus.RUNNING.value
|
|
for t in tsks:
|
|
if 0 <= t.progress < 1:
|
|
finished = False
|
|
prg += t.progress if t.progress >= 0 else 0
|
|
if t.progress_msg not in msg:
|
|
msg.append(t.progress_msg)
|
|
if t.progress == -1:
|
|
bad += 1
|
|
prg /= len(tsks)
|
|
if finished and bad:
|
|
prg = -1
|
|
status = TaskStatus.FAIL.value
|
|
elif finished:
|
|
if d["parser_config"].get("raptor", {}).get("use_raptor") and d["progress_msg"].lower().find(
|
|
" raptor") < 0:
|
|
queue_raptor_tasks(d)
|
|
prg = 0.98 * len(tsks) / (len(tsks) + 1)
|
|
msg.append("------ RAPTOR -------")
|
|
else:
|
|
status = TaskStatus.DONE.value
|
|
|
|
msg = "\n".join(msg)
|
|
info = {
|
|
"process_duation": datetime.timestamp(
|
|
datetime.now()) -
|
|
d["process_begin_at"].timestamp(),
|
|
"run": status}
|
|
if prg != 0:
|
|
info["progress"] = prg
|
|
if msg:
|
|
info["progress_msg"] = msg
|
|
cls.update_by_id(d["id"], info)
|
|
except Exception as e:
|
|
if str(e).find("'0'") < 0:
|
|
logging.exception("fetch task exception")
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_kb_doc_count(cls, kb_id):
|
|
return len(cls.model.select(cls.model.id).where(
|
|
cls.model.kb_id == kb_id).dicts())
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def do_cancel(cls, doc_id):
|
|
try:
|
|
_, doc = DocumentService.get_by_id(doc_id)
|
|
return doc.run == TaskStatus.CANCEL.value or doc.progress < 0
|
|
except Exception:
|
|
pass
|
|
return False
|
|
|
|
|
|
def queue_raptor_tasks(doc):
|
|
chunking_config = DocumentService.get_chunking_config(doc["id"])
|
|
hasher = xxhash.xxh64()
|
|
for field in sorted(chunking_config.keys()):
|
|
hasher.update(str(chunking_config[field]).encode("utf-8"))
|
|
|
|
def new_task():
|
|
nonlocal doc
|
|
return {
|
|
"id": get_uuid(),
|
|
"doc_id": doc["id"],
|
|
"from_page": 100000000,
|
|
"to_page": 100000000,
|
|
"progress_msg": "Start to do RAPTOR (Recursive Abstractive Processing for Tree-Organized Retrieval)."
|
|
}
|
|
|
|
task = new_task()
|
|
for field in ["doc_id", "from_page", "to_page"]:
|
|
hasher.update(str(task.get(field, "")).encode("utf-8"))
|
|
task["digest"] = hasher.hexdigest()
|
|
bulk_insert_into_db(Task, [task], True)
|
|
task["type"] = "raptor"
|
|
assert REDIS_CONN.queue_product(SVR_QUEUE_NAME, message=task), "Can't access Redis. Please check the Redis' status."
|
|
|
|
|
|
def doc_upload_and_parse(conversation_id, file_objs, user_id):
|
|
from rag.app import presentation, picture, naive, audio, email
|
|
from api.db.services.dialog_service import DialogService
|
|
from api.db.services.file_service import FileService
|
|
from api.db.services.llm_service import LLMBundle
|
|
from api.db.services.user_service import TenantService
|
|
from api.db.services.api_service import API4ConversationService
|
|
from api.db.services.conversation_service import ConversationService
|
|
|
|
e, conv = ConversationService.get_by_id(conversation_id)
|
|
if not e:
|
|
e, conv = API4ConversationService.get_by_id(conversation_id)
|
|
assert e, "Conversation not found!"
|
|
|
|
e, dia = DialogService.get_by_id(conv.dialog_id)
|
|
kb_id = dia.kb_ids[0]
|
|
e, kb = KnowledgebaseService.get_by_id(kb_id)
|
|
if not e:
|
|
raise LookupError("Can't find this knowledgebase!")
|
|
|
|
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id, lang=kb.language)
|
|
|
|
err, files = FileService.upload_document(kb, file_objs, user_id)
|
|
assert not err, "\n".join(err)
|
|
|
|
def dummy(prog=None, msg=""):
|
|
pass
|
|
|
|
FACTORY = {
|
|
ParserType.PRESENTATION.value: presentation,
|
|
ParserType.PICTURE.value: picture,
|
|
ParserType.AUDIO.value: audio,
|
|
ParserType.EMAIL.value: email
|
|
}
|
|
parser_config = {"chunk_token_num": 4096, "delimiter": "\n!?;。;!?", "layout_recognize": False}
|
|
exe = ThreadPoolExecutor(max_workers=12)
|
|
threads = []
|
|
doc_nm = {}
|
|
for d, blob in files:
|
|
doc_nm[d["id"]] = d["name"]
|
|
for d, blob in files:
|
|
kwargs = {
|
|
"callback": dummy,
|
|
"parser_config": parser_config,
|
|
"from_page": 0,
|
|
"to_page": 100000,
|
|
"tenant_id": kb.tenant_id,
|
|
"lang": kb.language
|
|
}
|
|
threads.append(exe.submit(FACTORY.get(d["parser_id"], naive).chunk, d["name"], blob, **kwargs))
|
|
|
|
for (docinfo, _), th in zip(files, threads):
|
|
docs = []
|
|
doc = {
|
|
"doc_id": docinfo["id"],
|
|
"kb_id": [kb.id]
|
|
}
|
|
for ck in th.result():
|
|
d = deepcopy(doc)
|
|
d.update(ck)
|
|
d["id"] = xxhash.xxh64((ck["content_with_weight"] + str(d["doc_id"])).encode("utf-8")).hexdigest()
|
|
d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
|
|
d["create_timestamp_flt"] = datetime.now().timestamp()
|
|
if not d.get("image"):
|
|
docs.append(d)
|
|
continue
|
|
|
|
output_buffer = BytesIO()
|
|
if isinstance(d["image"], bytes):
|
|
output_buffer = BytesIO(d["image"])
|
|
else:
|
|
d["image"].save(output_buffer, format='JPEG')
|
|
|
|
STORAGE_IMPL.put(kb.id, d["id"], output_buffer.getvalue())
|
|
d["img_id"] = "{}-{}".format(kb.id, d["id"])
|
|
d.pop("image", None)
|
|
docs.append(d)
|
|
|
|
parser_ids = {d["id"]: d["parser_id"] for d, _ in files}
|
|
docids = [d["id"] for d, _ in files]
|
|
chunk_counts = {id: 0 for id in docids}
|
|
token_counts = {id: 0 for id in docids}
|
|
es_bulk_size = 64
|
|
|
|
def embedding(doc_id, cnts, batch_size=16):
|
|
nonlocal embd_mdl, chunk_counts, token_counts
|
|
vects = []
|
|
for i in range(0, len(cnts), batch_size):
|
|
vts, c = embd_mdl.encode(cnts[i: i + batch_size])
|
|
vects.extend(vts.tolist())
|
|
chunk_counts[doc_id] += len(cnts[i:i + batch_size])
|
|
token_counts[doc_id] += c
|
|
return vects
|
|
|
|
idxnm = search.index_name(kb.tenant_id)
|
|
try_create_idx = True
|
|
|
|
_, tenant = TenantService.get_by_id(kb.tenant_id)
|
|
llm_bdl = LLMBundle(kb.tenant_id, LLMType.CHAT, tenant.llm_id)
|
|
for doc_id in docids:
|
|
cks = [c for c in docs if c["doc_id"] == doc_id]
|
|
|
|
if parser_ids[doc_id] != ParserType.PICTURE.value:
|
|
mindmap = MindMapExtractor(llm_bdl)
|
|
try:
|
|
mind_map = json.dumps(mindmap([c["content_with_weight"] for c in docs if c["doc_id"] == doc_id]).output,
|
|
ensure_ascii=False, indent=2)
|
|
if len(mind_map) < 32:
|
|
raise Exception("Few content: " + mind_map)
|
|
cks.append({
|
|
"id": get_uuid(),
|
|
"doc_id": doc_id,
|
|
"kb_id": [kb.id],
|
|
"docnm_kwd": doc_nm[doc_id],
|
|
"title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", doc_nm[doc_id])),
|
|
"content_ltks": rag_tokenizer.tokenize("summary summarize 总结 概况 file 文件 概括"),
|
|
"content_with_weight": mind_map,
|
|
"knowledge_graph_kwd": "mind_map"
|
|
})
|
|
except Exception as e:
|
|
logging.exception("Mind map generation error")
|
|
|
|
vects = embedding(doc_id, [c["content_with_weight"] for c in cks])
|
|
assert len(cks) == len(vects)
|
|
for i, d in enumerate(cks):
|
|
v = vects[i]
|
|
d["q_%d_vec" % len(v)] = v
|
|
for b in range(0, len(cks), es_bulk_size):
|
|
if try_create_idx:
|
|
if not settings.docStoreConn.indexExist(idxnm, kb_id):
|
|
settings.docStoreConn.createIdx(idxnm, kb_id, len(vects[0]))
|
|
try_create_idx = False
|
|
settings.docStoreConn.insert(cks[b:b + es_bulk_size], idxnm, kb_id)
|
|
|
|
DocumentService.increment_chunk_num(
|
|
doc_id, kb.id, token_counts[doc_id], chunk_counts[doc_id], 0)
|
|
|
|
return [d["id"] for d, _ in files] |