mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-07-27 11:42:01 +08:00

### What problem does this PR solve? SDK for session #1102 ### Type of change - [x] New Feature (non-breaking change which adds functionality) --------- Co-authored-by: Feiue <10215101452@stu.ecun.edu.cn> Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
145 lines
6.7 KiB
Python
145 lines
6.7 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import List
|
|
|
|
import requests
|
|
|
|
from .modules.chat_assistant import Assistant
|
|
from .modules.dataset import DataSet
|
|
|
|
|
|
class RAGFlow:
|
|
def __init__(self, user_key, base_url, version='v1'):
|
|
"""
|
|
api_url: http://<host_address>/api/v1
|
|
"""
|
|
self.user_key = user_key
|
|
self.api_url = f"{base_url}/api/{version}"
|
|
self.authorization_header = {"Authorization": "{} {}".format("Bearer", self.user_key)}
|
|
|
|
def post(self, path, param):
|
|
res = requests.post(url=self.api_url + path, json=param, headers=self.authorization_header)
|
|
return res
|
|
|
|
def get(self, path, params=None):
|
|
res = requests.get(url=self.api_url + path, params=params, headers=self.authorization_header)
|
|
return res
|
|
|
|
def delete(self, path, params):
|
|
res = requests.delete(url=self.api_url + path, params=params, headers=self.authorization_header)
|
|
return res
|
|
|
|
def create_dataset(self, name: str, avatar: str = "", description: str = "", language: str = "English",
|
|
permission: str = "me",
|
|
document_count: int = 0, chunk_count: int = 0, parse_method: str = "naive",
|
|
parser_config: DataSet.ParserConfig = None) -> DataSet:
|
|
if parser_config is None:
|
|
parser_config = DataSet.ParserConfig(self, {"chunk_token_count": 128, "layout_recognize": True,
|
|
"delimiter": "\n!?。;!?", "task_page_size": 12})
|
|
parser_config = parser_config.to_json()
|
|
res = self.post("/dataset/save",
|
|
{"name": name, "avatar": avatar, "description": description, "language": language,
|
|
"permission": permission,
|
|
"document_count": document_count, "chunk_count": chunk_count, "parse_method": parse_method,
|
|
"parser_config": parser_config
|
|
}
|
|
)
|
|
res = res.json()
|
|
if res.get("retmsg") == "success":
|
|
return DataSet(self, res["data"])
|
|
raise Exception(res["retmsg"])
|
|
|
|
def list_datasets(self, page: int = 1, page_size: int = 1024, orderby: str = "create_time", desc: bool = True) -> \
|
|
List[DataSet]:
|
|
res = self.get("/dataset/list", {"page": page, "page_size": page_size, "orderby": orderby, "desc": desc})
|
|
res = res.json()
|
|
result_list = []
|
|
if res.get("retmsg") == "success":
|
|
for data in res['data']:
|
|
result_list.append(DataSet(self, data))
|
|
return result_list
|
|
raise Exception(res["retmsg"])
|
|
|
|
def get_dataset(self, id: str = None, name: str = None) -> DataSet:
|
|
res = self.get("/dataset/detail", {"id": id, "name": name})
|
|
res = res.json()
|
|
if res.get("retmsg") == "success":
|
|
return DataSet(self, res['data'])
|
|
raise Exception(res["retmsg"])
|
|
|
|
def create_assistant(self, name: str = "assistant", avatar: str = "path", knowledgebases: List[DataSet] = [],
|
|
llm: Assistant.LLM = None, prompt: Assistant.Prompt = None) -> Assistant:
|
|
datasets = []
|
|
for dataset in knowledgebases:
|
|
datasets.append(dataset.to_json())
|
|
|
|
if llm is None:
|
|
llm = Assistant.LLM(self, {"model_name": None,
|
|
"temperature": 0.1,
|
|
"top_p": 0.3,
|
|
"presence_penalty": 0.4,
|
|
"frequency_penalty": 0.7,
|
|
"max_tokens": 512, })
|
|
if prompt is None:
|
|
prompt = Assistant.Prompt(self, {"similarity_threshold": 0.2,
|
|
"keywords_similarity_weight": 0.7,
|
|
"top_n": 8,
|
|
"variables": [{
|
|
"key": "knowledge",
|
|
"optional": True
|
|
}], "rerank_model": "",
|
|
"empty_response": None,
|
|
"opener": None,
|
|
"show_quote": True,
|
|
"prompt": None})
|
|
if prompt.opener is None:
|
|
prompt.opener = "Hi! I'm your assistant, what can I do for you?"
|
|
if prompt.prompt is None:
|
|
prompt.prompt = (
|
|
"You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. "
|
|
"Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, "
|
|
"your answer must include the sentence 'The answer you are looking for is not found in the knowledge base!' "
|
|
"Answers need to consider chat history.\nHere is the knowledge base:\n{knowledge}\nThe above is the knowledge base."
|
|
)
|
|
|
|
temp_dict = {"name": name,
|
|
"avatar": avatar,
|
|
"knowledgebases": datasets,
|
|
"llm": llm.to_json(),
|
|
"prompt": prompt.to_json()}
|
|
res = self.post("/assistant/save", temp_dict)
|
|
res = res.json()
|
|
if res.get("retmsg") == "success":
|
|
return Assistant(self, res["data"])
|
|
raise Exception(res["retmsg"])
|
|
|
|
def get_assistant(self, id: str = None, name: str = None) -> Assistant:
|
|
res = self.get("/assistant/get", {"id": id, "name": name})
|
|
res = res.json()
|
|
if res.get("retmsg") == "success":
|
|
return Assistant(self, res['data'])
|
|
raise Exception(res["retmsg"])
|
|
|
|
def list_assistants(self) -> List[Assistant]:
|
|
res = self.get("/assistant/list")
|
|
res = res.json()
|
|
result_list = []
|
|
if res.get("retmsg") == "success":
|
|
for data in res['data']:
|
|
result_list.append(Assistant(self, data))
|
|
return result_list
|
|
raise Exception(res["retmsg"])
|