mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-06-04 11:24:00 +08:00

### What problem does this PR solve? change create dataset delimiter default value to r'\n' ### Type of change - [x] New Feature (non-breaking change which adds functionality)
163 lines
5.9 KiB
Python
163 lines
5.9 KiB
Python
#
|
|
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
from enum import auto
|
|
from typing import Annotated, List, Optional
|
|
|
|
from pydantic import BaseModel, Field, StringConstraints, ValidationError, field_validator
|
|
from strenum import StrEnum
|
|
|
|
|
|
def format_validation_error_message(e: ValidationError) -> str:
|
|
error_messages = []
|
|
|
|
for error in e.errors():
|
|
field = ".".join(map(str, error["loc"]))
|
|
msg = error["msg"]
|
|
input_val = error["input"]
|
|
input_str = str(input_val)
|
|
|
|
if len(input_str) > 128:
|
|
input_str = input_str[:125] + "..."
|
|
|
|
error_msg = f"Field: <{field}> - Message: <{msg}> - Value: <{input_str}>"
|
|
error_messages.append(error_msg)
|
|
|
|
return "\n".join(error_messages)
|
|
|
|
|
|
class PermissionEnum(StrEnum):
|
|
me = auto()
|
|
team = auto()
|
|
|
|
|
|
class ChunkMethodnEnum(StrEnum):
|
|
naive = auto()
|
|
book = auto()
|
|
email = auto()
|
|
laws = auto()
|
|
manual = auto()
|
|
one = auto()
|
|
paper = auto()
|
|
picture = auto()
|
|
presentation = auto()
|
|
qa = auto()
|
|
table = auto()
|
|
tag = auto()
|
|
|
|
|
|
class GraphragMethodEnum(StrEnum):
|
|
light = auto()
|
|
general = auto()
|
|
|
|
|
|
class Base(BaseModel):
|
|
class Config:
|
|
extra = "forbid"
|
|
json_schema_extra = {"charset": "utf8mb4", "collation": "utf8mb4_0900_ai_ci"}
|
|
|
|
|
|
class RaptorConfig(Base):
|
|
use_raptor: bool = Field(default=False)
|
|
prompt: Annotated[
|
|
str,
|
|
StringConstraints(strip_whitespace=True, min_length=1),
|
|
Field(
|
|
default="Please summarize the following paragraphs. Be careful with the numbers, do not make things up. Paragraphs as following:\n {cluster_content}\nThe above is the content you need to summarize."
|
|
),
|
|
]
|
|
max_token: int = Field(default=256, ge=1, le=2048)
|
|
threshold: float = Field(default=0.1, ge=0.0, le=1.0)
|
|
max_cluster: int = Field(default=64, ge=1, le=1024)
|
|
random_seed: int = Field(default=0, ge=0)
|
|
|
|
|
|
class GraphragConfig(Base):
|
|
use_graphrag: bool = Field(default=False)
|
|
entity_types: List[str] = Field(default_factory=lambda: ["organization", "person", "geo", "event", "category"])
|
|
method: GraphragMethodEnum = Field(default=GraphragMethodEnum.light)
|
|
community: bool = Field(default=False)
|
|
resolution: bool = Field(default=False)
|
|
|
|
|
|
class ParserConfig(Base):
|
|
auto_keywords: int = Field(default=0, ge=0, le=32)
|
|
auto_questions: int = Field(default=0, ge=0, le=10)
|
|
chunk_token_num: int = Field(default=128, ge=1, le=2048)
|
|
delimiter: str = Field(default=r"\n", min_length=1)
|
|
graphrag: Optional[GraphragConfig] = None
|
|
html4excel: bool = False
|
|
layout_recognize: str = "DeepDOC"
|
|
raptor: Optional[RaptorConfig] = None
|
|
tag_kb_ids: List[str] = Field(default_factory=list)
|
|
topn_tags: int = Field(default=1, ge=1, le=10)
|
|
filename_embd_weight: Optional[float] = Field(default=None, ge=0.0, le=1.0)
|
|
task_page_size: Optional[int] = Field(default=None, ge=1)
|
|
pages: Optional[List[List[int]]] = None
|
|
|
|
|
|
class CreateDatasetReq(Base):
|
|
name: Annotated[str, StringConstraints(strip_whitespace=True, min_length=1, max_length=128), Field(...)]
|
|
avatar: Optional[str] = Field(default=None, max_length=65535)
|
|
description: Optional[str] = Field(default=None, max_length=65535)
|
|
embedding_model: Annotated[Optional[str], StringConstraints(strip_whitespace=True, max_length=255), Field(default=None, serialization_alias="embd_id")]
|
|
permission: Annotated[PermissionEnum, StringConstraints(strip_whitespace=True, min_length=1, max_length=16), Field(default=PermissionEnum.me)]
|
|
chunk_method: Annotated[ChunkMethodnEnum, StringConstraints(strip_whitespace=True, min_length=1, max_length=32), Field(default=ChunkMethodnEnum.naive, serialization_alias="parser_id")]
|
|
pagerank: int = Field(default=0, ge=0, le=100)
|
|
parser_config: Optional[ParserConfig] = Field(default=None)
|
|
|
|
@field_validator("avatar")
|
|
@classmethod
|
|
def validate_avatar_base64(cls, v: str) -> str:
|
|
if v is None:
|
|
return v
|
|
|
|
if "," in v:
|
|
prefix, _ = v.split(",", 1)
|
|
if not prefix.startswith("data:"):
|
|
raise ValueError("Invalid MIME prefix format. Must start with 'data:'")
|
|
|
|
mime_type = prefix[5:].split(";")[0]
|
|
supported_mime_types = ["image/jpeg", "image/png"]
|
|
if mime_type not in supported_mime_types:
|
|
raise ValueError(f"Unsupported MIME type. Allowed: {supported_mime_types}")
|
|
|
|
return v
|
|
else:
|
|
raise ValueError("Missing MIME prefix. Expected format: data:<mime>;base64,<data>")
|
|
|
|
@field_validator("embedding_model", mode="after")
|
|
@classmethod
|
|
def validate_embedding_model(cls, v: str) -> str:
|
|
if "@" not in v:
|
|
raise ValueError("Embedding model must be xxx@yyy")
|
|
return v
|
|
|
|
@field_validator("permission", mode="before")
|
|
@classmethod
|
|
def permission_auto_lowercase(cls, v: str) -> str:
|
|
if isinstance(v, str):
|
|
return v.lower()
|
|
return v
|
|
|
|
@field_validator("parser_config", mode="after")
|
|
@classmethod
|
|
def validate_parser_config_json_length(cls, v: Optional[ParserConfig]) -> Optional[ParserConfig]:
|
|
if v is not None:
|
|
json_str = v.model_dump_json()
|
|
if len(json_str) > 65535:
|
|
raise ValueError("Parser config have at most 65535 characters")
|
|
return v
|