mirror of
https://git.mirrors.martin98.com/https://github.com/danielgatis/rembg
synced 2025-08-05 18:50:36 +08:00
added USAGE.md
This commit is contained in:
parent
c37bc75120
commit
00766c5cd0
71
USAGE.md
Normal file
71
USAGE.md
Normal file
@ -0,0 +1,71 @@
|
||||
# How to use the remove function
|
||||
|
||||
## Load the Image
|
||||
```python
|
||||
from PIL import Image
|
||||
from rembg import new_session, remove
|
||||
|
||||
input_path = 'input.png'
|
||||
output_path = 'output.png'
|
||||
|
||||
input = Image.open(input_path)
|
||||
```
|
||||
## Removing the background
|
||||
|
||||
### Without additional arguments
|
||||
This defaults to the `u2net` model.
|
||||
```python
|
||||
output = remove(input)
|
||||
output.save(output_path)
|
||||
```
|
||||
|
||||
### With a specific model
|
||||
You can use the `new_session` function to create a session with a specific model.
|
||||
```python
|
||||
model_name = "isnet-general-use"
|
||||
session = new_session(model_name)
|
||||
output = session.remove(input, session=session)
|
||||
```
|
||||
|
||||
### With alpha metting
|
||||
Alpha metting is a post processing step that can be used to improve the quality of the output.
|
||||
```python
|
||||
output = remove(input, alpha_matting=True, alpha_matting_foreground_threshold=270,alpha_matting_background_threshold=20, alpha_matting_erode_size=11)
|
||||
```
|
||||
|
||||
### Only mask
|
||||
If you only want the mask, you can use the `only_mask` argument.
|
||||
```python
|
||||
output = remove(input, only_mask=True)
|
||||
```
|
||||
|
||||
### With post processing
|
||||
You can use the `post_process_mask` argument to post process the mask to get better results.
|
||||
```python
|
||||
output = remove(input, post_process_mask=True)
|
||||
```
|
||||
|
||||
### Replacing the background color
|
||||
You can use the `bgcolor` argument to replace the background color.
|
||||
```python
|
||||
output = remove(input, bgcolor=(255, 255, 255))
|
||||
```
|
||||
|
||||
### Using input points
|
||||
You can use the `input_point` and `input_label` argument to specify the points that should be used for the masks. This only works with the `sam` model.
|
||||
```python
|
||||
import numpy as np
|
||||
# Define the points and labels
|
||||
# The points are defined as [y, x]
|
||||
input_point = np.array([[400, 350], [700, 400], [200, 400]])
|
||||
input_label = np.array([1, 1, 2])
|
||||
|
||||
image = remove(image,session=session, input_point=input_point, input_label=input_label)
|
||||
```
|
||||
|
||||
## Save the image
|
||||
```python
|
||||
output.save(output_path)
|
||||
```
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user