added USAGE.md

This commit is contained in:
Flippchen 2023-04-20 23:27:08 +02:00
parent c37bc75120
commit 00766c5cd0

71
USAGE.md Normal file
View File

@ -0,0 +1,71 @@
# How to use the remove function
## Load the Image
```python
from PIL import Image
from rembg import new_session, remove
input_path = 'input.png'
output_path = 'output.png'
input = Image.open(input_path)
```
## Removing the background
### Without additional arguments
This defaults to the `u2net` model.
```python
output = remove(input)
output.save(output_path)
```
### With a specific model
You can use the `new_session` function to create a session with a specific model.
```python
model_name = "isnet-general-use"
session = new_session(model_name)
output = session.remove(input, session=session)
```
### With alpha metting
Alpha metting is a post processing step that can be used to improve the quality of the output.
```python
output = remove(input, alpha_matting=True, alpha_matting_foreground_threshold=270,alpha_matting_background_threshold=20, alpha_matting_erode_size=11)
```
### Only mask
If you only want the mask, you can use the `only_mask` argument.
```python
output = remove(input, only_mask=True)
```
### With post processing
You can use the `post_process_mask` argument to post process the mask to get better results.
```python
output = remove(input, post_process_mask=True)
```
### Replacing the background color
You can use the `bgcolor` argument to replace the background color.
```python
output = remove(input, bgcolor=(255, 255, 255))
```
### Using input points
You can use the `input_point` and `input_label` argument to specify the points that should be used for the masks. This only works with the `sam` model.
```python
import numpy as np
# Define the points and labels
# The points are defined as [y, x]
input_point = np.array([[400, 350], [700, 400], [200, 400]])
input_label = np.array([1, 1, 2])
image = remove(image,session=session, input_point=input_point, input_label=input_label)
```
## Save the image
```python
output.save(output_path)
```