fix project layout

This commit is contained in:
Daniel Gatis 2022-01-09 15:51:23 -03:00
parent 39e45f2e86
commit 0fd1236db4
5 changed files with 12 additions and 12 deletions

View File

@ -8,7 +8,7 @@ from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
from pymatting.util.util import stack_images
from scipy.ndimage.morphology import binary_erosion
from .u2net import detect
from .detect import load_model, predict
def alpha_matting_cutout(
@ -71,11 +71,11 @@ def naive_cutout(img, mask):
@functools.lru_cache(maxsize=None)
def get_model(model_name):
if model_name == "u2netp":
return detect.load_model(model_name="u2netp")
return load_model(model_name="u2netp")
if model_name == "u2net_human_seg":
return detect.load_model(model_name="u2net_human_seg")
return load_model(model_name="u2net_human_seg")
else:
return detect.load_model(model_name="u2net")
return load_model(model_name="u2net")
def resize_image(img, width, height):
@ -105,7 +105,7 @@ def remove(
img = resize_image(img, width, height)
model = get_model(model_name)
mask = detect.predict(model, np.array(img)).convert("L")
mask = predict(model, np.array(img)).convert("L")
if alpha_matting:
try:

View File

@ -15,8 +15,8 @@ from skimage import transform
from torchvision import transforms
from tqdm import tqdm
from . import data_loader, u2net
from .data_loader import RescaleT, ToTensorLab
from .u2net import U2NETP, U2NET
def download_file_from_google_drive(id, fname, destination):
head, tail = os.path.split(destination)
@ -55,7 +55,7 @@ def load_model(model_name: str = "u2net"):
hashfile = lambda f: md5(open(f, "rb").read()).hexdigest()
if model_name == "u2netp":
net = u2net.U2NETP(3, 1)
net = U2NETP(3, 1)
path = os.environ.get(
"U2NETP_PATH",
os.path.expanduser(os.path.join("~", ".u2net", model_name + ".pth")),
@ -71,7 +71,7 @@ def load_model(model_name: str = "u2net"):
)
elif model_name == "u2net":
net = u2net.U2NET(3, 1)
net = U2NET(3, 1)
path = os.environ.get(
"U2NET_PATH",
os.path.expanduser(os.path.join("~", ".u2net", model_name + ".pth")),
@ -82,12 +82,12 @@ def load_model(model_name: str = "u2net"):
):
download_file_from_google_drive(
"1ao1ovG1Qtx4b7EoskHXmi2E9rp5CHLcZ",
"u2net.pth",
"pth",
path,
)
elif model_name == "u2net_human_seg":
net = u2net.U2NET(3, 1)
net = U2NET(3, 1)
path = os.environ.get(
"U2NET_PATH",
os.path.expanduser(os.path.join("~", ".u2net", model_name + ".pth")),
@ -149,7 +149,7 @@ def preprocess(image):
label = label[:, :, np.newaxis]
transform = transforms.Compose(
[data_loader.RescaleT(320), data_loader.ToTensorLab(flag=0)]
[RescaleT(320), ToTensorLab(flag=0)]
)
sample = transform({"imidx": np.array([0]), "image": image, "label": label})