Merge pull request #431 from Flippchen/main

Added support for Facebook''s Segment Anything
This commit is contained in:
Daniel Gatis 2023-04-20 13:50:50 -03:00 committed by GitHub
commit 1e311331e6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 181 additions and 16 deletions

View File

@ -20,6 +20,7 @@ from scipy.ndimage import binary_erosion
from .session_base import BaseSession
from .session_factory import new_session
from .session_sam import SamSession
kernel = getStructuringElement(MORPH_ELLIPSE, (3, 3))
@ -119,10 +120,12 @@ def remove(
alpha_matting_foreground_threshold: int = 240,
alpha_matting_background_threshold: int = 10,
alpha_matting_erode_size: int = 10,
session: Optional[BaseSession] = None,
session: Optional[Union[BaseSession, SamSession]] = None,
only_mask: bool = False,
post_process_mask: bool = False,
bgcolor: Optional[Tuple[int, int, int, int]] = None,
input_point: Optional[np.ndarray] = None,
input_label: Optional[np.ndarray] = None,
) -> Union[bytes, PILImage, np.ndarray]:
if isinstance(data, PILImage):
return_type = ReturnType.PILLOW
@ -139,7 +142,13 @@ def remove(
if session is None:
session = new_session("u2net")
masks = session.predict(img)
if isinstance(session, SamSession):
if input_point is None or input_label is None:
raise ValueError("Input point and label are required for SAM model.")
masks = session.predict_sam(img, input_point, input_label)
else:
masks = session.predict(img)
cutouts = []
for mask in masks:

View File

@ -11,10 +11,30 @@ import pooch
from .session_base import BaseSession
from .session_cloth import ClothSession
from .session_dis import DisSession
from .session_sam import SamSession
from .session_simple import SimpleSession
def download_model(url: str, md5: str, fname: str, path: Path):
pooch.retrieve(
url,
f"md5:{md5}",
fname=fname,
path=path,
progressbar=True,
)
def new_session(model_name: str = "u2net") -> BaseSession:
# Define the model path
u2net_home = os.getenv(
"U2NET_HOME", os.path.join(os.getenv("XDG_DATA_HOME", "~"), ".u2net")
)
fname = f"{model_name}.onnx"
path = Path(u2net_home).expanduser()
full_path = Path(u2net_home).expanduser() / fname
session_class: Type[BaseSession]
md5 = "60024c5c889badc19c04ad937298a77b"
url = "https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2net.onnx"
@ -44,22 +64,40 @@ def new_session(model_name: str = "u2net") -> BaseSession:
md5 = "fc16ebd8b0c10d971d3513d564d01e29"
url = "https://github.com/danielgatis/rembg/releases/download/v0.0.0/isnet-general-use.onnx"
session_class = DisSession
elif model_name == "sam":
path = Path(u2net_home).expanduser()
u2net_home = os.getenv(
"U2NET_HOME", os.path.join(os.getenv("XDG_DATA_HOME", "~"), ".u2net")
)
fname_encoder = f"{model_name}_encoder.onnx"
encoder_md5 = "13d97c5c79ab13ef86d67cbde5f1b250"
encoder_url = "https://github.com/Flippchen/rembg/releases/download/test/vit_b-encoder-quant.onnx"
fname = f"{model_name}.onnx"
path = Path(u2net_home).expanduser()
full_path = Path(u2net_home).expanduser() / fname
fname_decoder = f"{model_name}_decoder.onnx"
decoder_md5 = "fa3d1c36a3187d3de1c8deebf33dd127"
decoder_url = "https://github.com/Flippchen/rembg/releases/download/test/vit_b-decoder-quant.onnx"
pooch.retrieve(
url,
f"md5:{md5}",
fname=fname,
path=Path(u2net_home).expanduser(),
progressbar=True,
)
download_model(encoder_url, encoder_md5, fname_encoder, path)
download_model(decoder_url, decoder_md5, fname_decoder, path)
sess_opts = ort.SessionOptions()
if "OMP_NUM_THREADS" in os.environ:
sess_opts.inter_op_num_threads = int(os.environ["OMP_NUM_THREADS"])
return SamSession(
model_name,
ort.InferenceSession(
str(path / fname_encoder),
providers=ort.get_available_providers(),
sess_options=sess_opts,
),
ort.InferenceSession(
str(path / fname_decoder),
providers=ort.get_available_providers(),
sess_options=sess_opts,
),
)
download_model(url, md5, fname, path)
sess_opts = ort.SessionOptions()

118
rembg/session_sam.py Normal file
View File

@ -0,0 +1,118 @@
from typing import List
import numpy as np
import onnxruntime as ort
from PIL import Image
from PIL.Image import Image as PILImage
from .session_base import BaseSession
def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int):
scale = long_side_length * 1.0 / max(oldh, oldw)
newh, neww = oldh * scale, oldw * scale
neww = int(neww + 0.5)
newh = int(newh + 0.5)
return (newh, neww)
def apply_coords(coords: np.ndarray, original_size, target_length) -> np.ndarray:
old_h, old_w = original_size
new_h, new_w = get_preprocess_shape(
original_size[0], original_size[1], target_length
)
coords = coords.copy().astype(float)
coords[..., 0] = coords[..., 0] * (new_w / old_w)
coords[..., 1] = coords[..., 1] * (new_h / old_h)
return coords
def resize_longes_side(img: PILImage, size=1024):
w, h = img.size
if h > w:
new_h, new_w = size, int(w * size / h)
else:
new_h, new_w = int(h * size / w), size
return img.resize((new_w, new_h))
def pad_to_square(img: np.ndarray, size=1024):
h, w = img.shape[:2]
padh = size - h
padw = size - w
img = np.pad(img, ((0, padh), (0, padw), (0, 0)), mode="constant")
img = img.astype(np.float32)
return img
class SamSession(BaseSession):
def __init__(
self,
model_name: str,
encoder: ort.InferenceSession,
decoder: ort.InferenceSession,
):
super().__init__(model_name, encoder)
self.decoder = decoder
def normalize(
self,
img: np.ndarray,
mean=(123.675, 116.28, 103.53),
std=(58.395, 57.12, 57.375),
size=(1024, 1024),
):
pixel_mean = np.array([*mean]).reshape(1, 1, -1)
pixel_std = np.array([*std]).reshape(1, 1, -1)
x = (img - pixel_mean) / pixel_std
return x
def predict_sam(
self,
img: PILImage,
input_point: np.ndarray,
input_label: np.ndarray,
) -> List[PILImage]:
# Preprocess image
image = resize_longes_side(img)
image = np.array(image)
image = self.normalize(image)
image = pad_to_square(image)
# Transpose
image = image.transpose(2, 0, 1)[None, :, :, :]
# Run encoder (Image embedding)
encoded = self.inner_session.run(None, {"x": image})
image_embedding = encoded[0]
# Add a batch index, concatenate a padding point, and transform.
onnx_coord = np.concatenate([input_point, np.array([[0.0, 0.0]])], axis=0)[
None, :, :
]
onnx_label = np.concatenate([input_label, np.array([-1])], axis=0)[
None, :
].astype(np.float32)
onnx_coord = apply_coords(onnx_coord, img.size[::1], 1024).astype(np.float32)
# Create an empty mask input and an indicator for no mask.
onnx_mask_input = np.zeros((1, 1, 256, 256), dtype=np.float32)
onnx_has_mask_input = np.zeros(1, dtype=np.float32)
decoder_inputs = {
"image_embeddings": image_embedding,
"point_coords": onnx_coord,
"point_labels": onnx_label,
"mask_input": onnx_mask_input,
"has_mask_input": onnx_has_mask_input,
"orig_im_size": np.array(img.size[::-1], dtype=np.float32),
}
masks, _, low_res_logits = self.decoder.run(None, decoder_inputs)
masks = masks > 0.0
masks = [
Image.fromarray((masks[i, 0] * 255).astype(np.uint8))
for i in range(masks.shape[0])
]
return masks

View File

@ -6,7 +6,7 @@ filetype==1.2.0
pooch==1.6.0
imagehash==4.3.1
numpy==1.23.5
onnxruntime==1.13.1
onnxruntime==1.14.1
opencv-python-headless==4.6.0.66
pillow==9.3.0
pymatting==1.1.8