mirror of
https://git.mirrors.martin98.com/https://github.com/danielgatis/rembg
synced 2025-08-16 20:35:52 +08:00
Merge pull request #431 from Flippchen/main
Added support for Facebook''s Segment Anything
This commit is contained in:
commit
1e311331e6
13
rembg/bg.py
13
rembg/bg.py
@ -20,6 +20,7 @@ from scipy.ndimage import binary_erosion
|
||||
|
||||
from .session_base import BaseSession
|
||||
from .session_factory import new_session
|
||||
from .session_sam import SamSession
|
||||
|
||||
kernel = getStructuringElement(MORPH_ELLIPSE, (3, 3))
|
||||
|
||||
@ -119,10 +120,12 @@ def remove(
|
||||
alpha_matting_foreground_threshold: int = 240,
|
||||
alpha_matting_background_threshold: int = 10,
|
||||
alpha_matting_erode_size: int = 10,
|
||||
session: Optional[BaseSession] = None,
|
||||
session: Optional[Union[BaseSession, SamSession]] = None,
|
||||
only_mask: bool = False,
|
||||
post_process_mask: bool = False,
|
||||
bgcolor: Optional[Tuple[int, int, int, int]] = None,
|
||||
input_point: Optional[np.ndarray] = None,
|
||||
input_label: Optional[np.ndarray] = None,
|
||||
) -> Union[bytes, PILImage, np.ndarray]:
|
||||
if isinstance(data, PILImage):
|
||||
return_type = ReturnType.PILLOW
|
||||
@ -139,7 +142,13 @@ def remove(
|
||||
if session is None:
|
||||
session = new_session("u2net")
|
||||
|
||||
masks = session.predict(img)
|
||||
if isinstance(session, SamSession):
|
||||
if input_point is None or input_label is None:
|
||||
raise ValueError("Input point and label are required for SAM model.")
|
||||
masks = session.predict_sam(img, input_point, input_label)
|
||||
else:
|
||||
masks = session.predict(img)
|
||||
|
||||
cutouts = []
|
||||
|
||||
for mask in masks:
|
||||
|
@ -11,10 +11,30 @@ import pooch
|
||||
from .session_base import BaseSession
|
||||
from .session_cloth import ClothSession
|
||||
from .session_dis import DisSession
|
||||
from .session_sam import SamSession
|
||||
from .session_simple import SimpleSession
|
||||
|
||||
|
||||
def download_model(url: str, md5: str, fname: str, path: Path):
|
||||
pooch.retrieve(
|
||||
url,
|
||||
f"md5:{md5}",
|
||||
fname=fname,
|
||||
path=path,
|
||||
progressbar=True,
|
||||
)
|
||||
|
||||
|
||||
def new_session(model_name: str = "u2net") -> BaseSession:
|
||||
# Define the model path
|
||||
u2net_home = os.getenv(
|
||||
"U2NET_HOME", os.path.join(os.getenv("XDG_DATA_HOME", "~"), ".u2net")
|
||||
)
|
||||
|
||||
fname = f"{model_name}.onnx"
|
||||
path = Path(u2net_home).expanduser()
|
||||
full_path = Path(u2net_home).expanduser() / fname
|
||||
|
||||
session_class: Type[BaseSession]
|
||||
md5 = "60024c5c889badc19c04ad937298a77b"
|
||||
url = "https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2net.onnx"
|
||||
@ -44,22 +64,40 @@ def new_session(model_name: str = "u2net") -> BaseSession:
|
||||
md5 = "fc16ebd8b0c10d971d3513d564d01e29"
|
||||
url = "https://github.com/danielgatis/rembg/releases/download/v0.0.0/isnet-general-use.onnx"
|
||||
session_class = DisSession
|
||||
elif model_name == "sam":
|
||||
path = Path(u2net_home).expanduser()
|
||||
|
||||
u2net_home = os.getenv(
|
||||
"U2NET_HOME", os.path.join(os.getenv("XDG_DATA_HOME", "~"), ".u2net")
|
||||
)
|
||||
fname_encoder = f"{model_name}_encoder.onnx"
|
||||
encoder_md5 = "13d97c5c79ab13ef86d67cbde5f1b250"
|
||||
encoder_url = "https://github.com/Flippchen/rembg/releases/download/test/vit_b-encoder-quant.onnx"
|
||||
|
||||
fname = f"{model_name}.onnx"
|
||||
path = Path(u2net_home).expanduser()
|
||||
full_path = Path(u2net_home).expanduser() / fname
|
||||
fname_decoder = f"{model_name}_decoder.onnx"
|
||||
decoder_md5 = "fa3d1c36a3187d3de1c8deebf33dd127"
|
||||
decoder_url = "https://github.com/Flippchen/rembg/releases/download/test/vit_b-decoder-quant.onnx"
|
||||
|
||||
pooch.retrieve(
|
||||
url,
|
||||
f"md5:{md5}",
|
||||
fname=fname,
|
||||
path=Path(u2net_home).expanduser(),
|
||||
progressbar=True,
|
||||
)
|
||||
download_model(encoder_url, encoder_md5, fname_encoder, path)
|
||||
download_model(decoder_url, decoder_md5, fname_decoder, path)
|
||||
|
||||
sess_opts = ort.SessionOptions()
|
||||
|
||||
if "OMP_NUM_THREADS" in os.environ:
|
||||
sess_opts.inter_op_num_threads = int(os.environ["OMP_NUM_THREADS"])
|
||||
|
||||
return SamSession(
|
||||
model_name,
|
||||
ort.InferenceSession(
|
||||
str(path / fname_encoder),
|
||||
providers=ort.get_available_providers(),
|
||||
sess_options=sess_opts,
|
||||
),
|
||||
ort.InferenceSession(
|
||||
str(path / fname_decoder),
|
||||
providers=ort.get_available_providers(),
|
||||
sess_options=sess_opts,
|
||||
),
|
||||
)
|
||||
|
||||
download_model(url, md5, fname, path)
|
||||
|
||||
sess_opts = ort.SessionOptions()
|
||||
|
||||
|
118
rembg/session_sam.py
Normal file
118
rembg/session_sam.py
Normal file
@ -0,0 +1,118 @@
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
from PIL import Image
|
||||
from PIL.Image import Image as PILImage
|
||||
|
||||
from .session_base import BaseSession
|
||||
|
||||
|
||||
def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int):
|
||||
scale = long_side_length * 1.0 / max(oldh, oldw)
|
||||
newh, neww = oldh * scale, oldw * scale
|
||||
neww = int(neww + 0.5)
|
||||
newh = int(newh + 0.5)
|
||||
return (newh, neww)
|
||||
|
||||
|
||||
def apply_coords(coords: np.ndarray, original_size, target_length) -> np.ndarray:
|
||||
old_h, old_w = original_size
|
||||
new_h, new_w = get_preprocess_shape(
|
||||
original_size[0], original_size[1], target_length
|
||||
)
|
||||
coords = coords.copy().astype(float)
|
||||
coords[..., 0] = coords[..., 0] * (new_w / old_w)
|
||||
coords[..., 1] = coords[..., 1] * (new_h / old_h)
|
||||
return coords
|
||||
|
||||
|
||||
def resize_longes_side(img: PILImage, size=1024):
|
||||
w, h = img.size
|
||||
if h > w:
|
||||
new_h, new_w = size, int(w * size / h)
|
||||
else:
|
||||
new_h, new_w = int(h * size / w), size
|
||||
|
||||
return img.resize((new_w, new_h))
|
||||
|
||||
|
||||
def pad_to_square(img: np.ndarray, size=1024):
|
||||
h, w = img.shape[:2]
|
||||
padh = size - h
|
||||
padw = size - w
|
||||
img = np.pad(img, ((0, padh), (0, padw), (0, 0)), mode="constant")
|
||||
img = img.astype(np.float32)
|
||||
return img
|
||||
|
||||
|
||||
class SamSession(BaseSession):
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
encoder: ort.InferenceSession,
|
||||
decoder: ort.InferenceSession,
|
||||
):
|
||||
super().__init__(model_name, encoder)
|
||||
self.decoder = decoder
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
img: np.ndarray,
|
||||
mean=(123.675, 116.28, 103.53),
|
||||
std=(58.395, 57.12, 57.375),
|
||||
size=(1024, 1024),
|
||||
):
|
||||
pixel_mean = np.array([*mean]).reshape(1, 1, -1)
|
||||
pixel_std = np.array([*std]).reshape(1, 1, -1)
|
||||
x = (img - pixel_mean) / pixel_std
|
||||
return x
|
||||
|
||||
def predict_sam(
|
||||
self,
|
||||
img: PILImage,
|
||||
input_point: np.ndarray,
|
||||
input_label: np.ndarray,
|
||||
) -> List[PILImage]:
|
||||
# Preprocess image
|
||||
image = resize_longes_side(img)
|
||||
image = np.array(image)
|
||||
image = self.normalize(image)
|
||||
image = pad_to_square(image)
|
||||
|
||||
# Transpose
|
||||
image = image.transpose(2, 0, 1)[None, :, :, :]
|
||||
# Run encoder (Image embedding)
|
||||
encoded = self.inner_session.run(None, {"x": image})
|
||||
image_embedding = encoded[0]
|
||||
|
||||
# Add a batch index, concatenate a padding point, and transform.
|
||||
onnx_coord = np.concatenate([input_point, np.array([[0.0, 0.0]])], axis=0)[
|
||||
None, :, :
|
||||
]
|
||||
onnx_label = np.concatenate([input_label, np.array([-1])], axis=0)[
|
||||
None, :
|
||||
].astype(np.float32)
|
||||
onnx_coord = apply_coords(onnx_coord, img.size[::1], 1024).astype(np.float32)
|
||||
|
||||
# Create an empty mask input and an indicator for no mask.
|
||||
onnx_mask_input = np.zeros((1, 1, 256, 256), dtype=np.float32)
|
||||
onnx_has_mask_input = np.zeros(1, dtype=np.float32)
|
||||
|
||||
decoder_inputs = {
|
||||
"image_embeddings": image_embedding,
|
||||
"point_coords": onnx_coord,
|
||||
"point_labels": onnx_label,
|
||||
"mask_input": onnx_mask_input,
|
||||
"has_mask_input": onnx_has_mask_input,
|
||||
"orig_im_size": np.array(img.size[::-1], dtype=np.float32),
|
||||
}
|
||||
|
||||
masks, _, low_res_logits = self.decoder.run(None, decoder_inputs)
|
||||
masks = masks > 0.0
|
||||
masks = [
|
||||
Image.fromarray((masks[i, 0] * 255).astype(np.uint8))
|
||||
for i in range(masks.shape[0])
|
||||
]
|
||||
|
||||
return masks
|
@ -6,7 +6,7 @@ filetype==1.2.0
|
||||
pooch==1.6.0
|
||||
imagehash==4.3.1
|
||||
numpy==1.23.5
|
||||
onnxruntime==1.13.1
|
||||
onnxruntime==1.14.1
|
||||
opencv-python-headless==4.6.0.66
|
||||
pillow==9.3.0
|
||||
pymatting==1.1.8
|
||||
|
Loading…
x
Reference in New Issue
Block a user