mirror of
https://git.mirrors.martin98.com/https://github.com/danielgatis/rembg
synced 2025-08-05 19:56:07 +08:00
fix lint
This commit is contained in:
parent
106254c42d
commit
bb3c58f411
@ -75,7 +75,6 @@ def new_session(model_name: str = "u2net") -> BaseSession:
|
||||
decoder_md5 = "fa3d1c36a3187d3de1c8deebf33dd127"
|
||||
decoder_url = "https://github.com/Flippchen/rembg/releases/download/test/vit_b-decoder-quant.onnx"
|
||||
|
||||
|
||||
download_model(encoder_url, encoder_md5, fname_encoder, path)
|
||||
download_model(decoder_url, decoder_md5, fname_decoder, path)
|
||||
|
||||
@ -86,8 +85,16 @@ def new_session(model_name: str = "u2net") -> BaseSession:
|
||||
|
||||
return SamSession(
|
||||
model_name,
|
||||
ort.InferenceSession(str(path / fname_encoder), providers=ort.get_available_providers(), sess_options=sess_opts),
|
||||
ort.InferenceSession(str(path / fname_decoder), providers=ort.get_available_providers(), sess_options=sess_opts)
|
||||
ort.InferenceSession(
|
||||
str(path / fname_encoder),
|
||||
providers=ort.get_available_providers(),
|
||||
sess_options=sess_opts
|
||||
),
|
||||
ort.InferenceSession(
|
||||
str(path / fname_decoder),
|
||||
providers=ort.get_available_providers(),
|
||||
sess_options=sess_opts
|
||||
),
|
||||
)
|
||||
|
||||
download_model(url, md5, fname, path)
|
||||
|
@ -43,23 +43,39 @@ def pad_to_square(img: numpy.ndarray, size=1024):
|
||||
h, w = img.shape[:2]
|
||||
padh = size - h
|
||||
padw = size - w
|
||||
img = np.pad(img, ((0, padh), (0, padw), (0, 0)), mode='constant')
|
||||
img = np.pad(img, ((0, padh), (0, padw), (0, 0)), mode="constant")
|
||||
img = img.astype(np.float32)
|
||||
return img
|
||||
|
||||
|
||||
class SamSession(BaseSession):
|
||||
def __init__(self, model_name: str, encoder: ort.InferenceSession, decoder: ort.InferenceSession):
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
encoder: ort.InferenceSession,
|
||||
decoder: ort.InferenceSession
|
||||
):
|
||||
super().__init__(model_name, encoder)
|
||||
self.decoder = decoder
|
||||
|
||||
def normalize(self, img: numpy.ndarray, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), size=(1024, 1024)):
|
||||
def normalize(
|
||||
self,
|
||||
img: numpy.ndarray,
|
||||
mean=(0.485, 0.456, 0.406),
|
||||
std=(0.229, 0.224, 0.225),
|
||||
size=(1024, 1024)
|
||||
):
|
||||
pixel_mean = np.array([123.675, 116.28, 103.53]).reshape(1, 1, -1)
|
||||
pixel_std = np.array([58.395, 57.12, 57.375]).reshape(1, 1, -1)
|
||||
x = (img - pixel_mean) / pixel_std
|
||||
return x
|
||||
|
||||
def predict(self, img: PILImage, input_point=np.array([[500, 375]]), input_label=np.array([1])) -> List[PILImage]:
|
||||
def predict(
|
||||
self,
|
||||
img: PILImage,
|
||||
input_point=np.array([[500, 375]]),
|
||||
input_label=np.array([1])
|
||||
) -> List[PILImage]:
|
||||
# Preprocess image
|
||||
image = resize_longes_side(img)
|
||||
image = numpy.array(image)
|
||||
@ -73,8 +89,12 @@ class SamSession(BaseSession):
|
||||
image_embedding = encoded[0]
|
||||
|
||||
# Add a batch index, concatenate a padding point, and transform.
|
||||
onnx_coord = np.concatenate([input_point, np.array([[0.0, 0.0]])], axis=0)[None, :, :]
|
||||
onnx_label = np.concatenate([input_label, np.array([-1])], axis=0)[None, :].astype(np.float32)
|
||||
onnx_coord = np.concatenate([input_point, np.array([[0.0, 0.0]])], axis=0)[
|
||||
None, :, :
|
||||
]
|
||||
onnx_label = np.concatenate([input_label, np.array([-1])], axis=0)[
|
||||
None, :
|
||||
].astype(np.float32)
|
||||
onnx_coord = apply_coords(onnx_coord, img.size[::1], 1024).astype(np.float32)
|
||||
|
||||
# Create an empty mask input and an indicator for no mask.
|
||||
@ -87,11 +107,14 @@ class SamSession(BaseSession):
|
||||
"point_labels": onnx_label,
|
||||
"mask_input": onnx_mask_input,
|
||||
"has_mask_input": onnx_has_mask_input,
|
||||
"orig_im_size": np.array(img.size[::-1], dtype=np.float32)
|
||||
"orig_im_size": np.array(img.size[::-1], dtype=np.float32),
|
||||
}
|
||||
|
||||
masks, _, low_res_logits = self.decoder.run(None, decoder_inputs)
|
||||
masks = masks > 0.0
|
||||
masks = [Image.fromarray((masks[i, 0] * 255).astype(np.uint8)) for i in range(masks.shape[0])]
|
||||
masks = [
|
||||
Image.fromarray((masks[i, 0] * 255).astype(np.uint8))
|
||||
for i in range(masks.shape[0])
|
||||
]
|
||||
|
||||
return masks
|
||||
|
Loading…
x
Reference in New Issue
Block a user