This commit is contained in:
Flippchen 2023-04-20 11:31:15 +02:00
parent 106254c42d
commit bb3c58f411
2 changed files with 41 additions and 11 deletions

View File

@ -75,7 +75,6 @@ def new_session(model_name: str = "u2net") -> BaseSession:
decoder_md5 = "fa3d1c36a3187d3de1c8deebf33dd127"
decoder_url = "https://github.com/Flippchen/rembg/releases/download/test/vit_b-decoder-quant.onnx"
download_model(encoder_url, encoder_md5, fname_encoder, path)
download_model(decoder_url, decoder_md5, fname_decoder, path)
@ -86,8 +85,16 @@ def new_session(model_name: str = "u2net") -> BaseSession:
return SamSession(
model_name,
ort.InferenceSession(str(path / fname_encoder), providers=ort.get_available_providers(), sess_options=sess_opts),
ort.InferenceSession(str(path / fname_decoder), providers=ort.get_available_providers(), sess_options=sess_opts)
ort.InferenceSession(
str(path / fname_encoder),
providers=ort.get_available_providers(),
sess_options=sess_opts
),
ort.InferenceSession(
str(path / fname_decoder),
providers=ort.get_available_providers(),
sess_options=sess_opts
),
)
download_model(url, md5, fname, path)

View File

@ -43,23 +43,39 @@ def pad_to_square(img: numpy.ndarray, size=1024):
h, w = img.shape[:2]
padh = size - h
padw = size - w
img = np.pad(img, ((0, padh), (0, padw), (0, 0)), mode='constant')
img = np.pad(img, ((0, padh), (0, padw), (0, 0)), mode="constant")
img = img.astype(np.float32)
return img
class SamSession(BaseSession):
def __init__(self, model_name: str, encoder: ort.InferenceSession, decoder: ort.InferenceSession):
def __init__(
self,
model_name: str,
encoder: ort.InferenceSession,
decoder: ort.InferenceSession
):
super().__init__(model_name, encoder)
self.decoder = decoder
def normalize(self, img: numpy.ndarray, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), size=(1024, 1024)):
def normalize(
self,
img: numpy.ndarray,
mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225),
size=(1024, 1024)
):
pixel_mean = np.array([123.675, 116.28, 103.53]).reshape(1, 1, -1)
pixel_std = np.array([58.395, 57.12, 57.375]).reshape(1, 1, -1)
x = (img - pixel_mean) / pixel_std
return x
def predict(self, img: PILImage, input_point=np.array([[500, 375]]), input_label=np.array([1])) -> List[PILImage]:
def predict(
self,
img: PILImage,
input_point=np.array([[500, 375]]),
input_label=np.array([1])
) -> List[PILImage]:
# Preprocess image
image = resize_longes_side(img)
image = numpy.array(image)
@ -73,8 +89,12 @@ class SamSession(BaseSession):
image_embedding = encoded[0]
# Add a batch index, concatenate a padding point, and transform.
onnx_coord = np.concatenate([input_point, np.array([[0.0, 0.0]])], axis=0)[None, :, :]
onnx_label = np.concatenate([input_label, np.array([-1])], axis=0)[None, :].astype(np.float32)
onnx_coord = np.concatenate([input_point, np.array([[0.0, 0.0]])], axis=0)[
None, :, :
]
onnx_label = np.concatenate([input_label, np.array([-1])], axis=0)[
None, :
].astype(np.float32)
onnx_coord = apply_coords(onnx_coord, img.size[::1], 1024).astype(np.float32)
# Create an empty mask input and an indicator for no mask.
@ -87,11 +107,14 @@ class SamSession(BaseSession):
"point_labels": onnx_label,
"mask_input": onnx_mask_input,
"has_mask_input": onnx_has_mask_input,
"orig_im_size": np.array(img.size[::-1], dtype=np.float32)
"orig_im_size": np.array(img.size[::-1], dtype=np.float32),
}
masks, _, low_res_logits = self.decoder.run(None, decoder_inputs)
masks = masks > 0.0
masks = [Image.fromarray((masks[i, 0] * 255).astype(np.uint8)) for i in range(masks.shape[0])]
masks = [
Image.fromarray((masks[i, 0] * 255).astype(np.uint8))
for i in range(masks.shape[0])
]
return masks