# Rembg [![Downloads](https://img.shields.io/pypi/dm/rembg.svg)](https://img.shields.io/pypi/dm/rembg.svg) [![License](https://img.shields.io/badge/License-MIT-blue.svg)](https://img.shields.io/badge/License-MIT-blue.svg) [![Hugging Face Spaces](https://img.shields.io/badge/🤗%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/KenjieDec/RemBG) [![Streamlit App](https://img.shields.io/badge/🎈%20Streamlit%20Community-Cloud-blue)](https://bgremoval.streamlit.app/) Rembg is a tool to remove images background.

example car-1 example car-1.out example car-2 example car-2.out example car-3 example car-3.out

example animal-1 example animal-1.out example animal-2 example animal-2.out example animal-3 example animal-3.out

example girl-1 example girl-1.out example girl-2 example girl-2.out example girl-3 example girl-3.out

example anime-girl-1 example anime-girl-1.out example anime-girl-2 example anime-girl-2.out example anime-girl-3 example anime-girl-3.out

**If this project has helped you, please consider making a [donation](https://www.buymeacoffee.com/danielgatis).** ## Sponsors
withoutBG API Logo withoutBG API
https://withoutbg.com

High-quality background removal API at affordable rates

Unsplash PhotoRoom Remove Background API
https://photoroom.com/api

Fast and accurate background remover API

## Requirements ```text python: >=3.10, <3.14 ``` ## Installation If you have `onnxruntime` already installed, just install `rembg`: ```bash pip install rembg # for library pip install "rembg[cli]" # for library + cli ``` Otherwise, install `rembg` with explicit CPU/GPU support. ### CPU support: ```bash pip install rembg[cpu] # for library pip install "rembg[cpu,cli]" # for library + cli ``` ### GPU support: First of all, you need to check if your system supports the `onnxruntime-gpu`. Go to [onnxruntime.ai]() and check the installation matrix.

onnxruntime-installation-matrix

If yes, just run: ```bash pip install "rembg[gpu]" # for library pip install "rembg[gpu,cli]" # for library + cli ``` Nvidia GPU may require onnxruntime-gpu, cuda, and cudnn-devel. [#668](https://github.com/danielgatis/rembg/issues/668#issuecomment-2689830314) . If rembg[gpu] doesn't work and you can't install cuda or cudnn-devel, use rembg[cpu] and onnxruntime instead. ## Usage as a cli After the installation step you can use rembg just typing `rembg` in your terminal window. The `rembg` command has 4 subcommands, one for each input type: - `i` for files - `p` for folders - `s` for http server - `b` for RGB24 pixel binary stream You can get help about the main command using: ```shell rembg --help ``` As well, about all the subcommands using: ```shell rembg --help ``` ### rembg `i` Used when input and output are files. Remove the background from a remote image ```shell curl -s http://input.png | rembg i > output.png ``` Remove the background from a local file ```shell rembg i path/to/input.png path/to/output.png ``` Remove the background specifying a model ```shell rembg i -m u2netp path/to/input.png path/to/output.png ``` Remove the background returning only the mask ```shell rembg i -om path/to/input.png path/to/output.png ``` Remove the background applying an alpha matting ```shell rembg i -a path/to/input.png path/to/output.png ``` Passing extras parameters ```shell SAM example rembg i -m sam -x '{ "sam_prompt": [{"type": "point", "data": [724, 740], "label": 1}] }' examples/plants-1.jpg examples/plants-1.out.png ``` ```shell Custom model example rembg i -m u2net_custom -x '{"model_path": "~/.u2net/u2net.onnx"}' path/to/input.png path/to/output.png ``` ### rembg `p` Used when input and output are folders. Remove the background from all images in a folder ```shell rembg p path/to/input path/to/output ``` Same as before, but watching for new/changed files to process ```shell rembg p -w path/to/input path/to/output ``` ### rembg `s` Used to start http server. ```shell rembg s --host 0.0.0.0 --port 7000 --log_level info ``` To see the complete endpoints documentation, go to: `http://localhost:7000/api`. Remove the background from an image url ```shell curl -s "http://localhost:7000/api/remove?url=http://input.png" -o output.png ``` Remove the background from an uploaded image ```shell curl -s -F file=@/path/to/input.jpg "http://localhost:7000/api/remove" -o output.png ``` ### rembg `b` Process a sequence of RGB24 images from stdin. This is intended to be used with another program, such as FFMPEG, that outputs RGB24 pixel data to stdout, which is piped into the stdin of this program, although nothing prevents you from manually typing in images at stdin. ```shell rembg b image_width image_height -o output_specifier ``` Arguments: - image_width : width of input image(s) - image_height : height of input image(s) - output_specifier: printf-style specifier for output filenames, for example if `output-%03u.png`, then output files will be named `output-000.png`, `output-001.png`, `output-002.png`, etc. Output files will be saved in PNG format regardless of the extension specified. You can omit it to write results to stdout. Example usage with FFMPEG: ```shell ffmpeg -i input.mp4 -ss 10 -an -f rawvideo -pix_fmt rgb24 pipe:1 | rembg b 1280 720 -o folder/output-%03u.png ``` The width and height values must match the dimension of output images from FFMPEG. Note for FFMPEG, the "`-an -f rawvideo -pix_fmt rgb24 pipe:1`" part is required for the whole thing to work. ## Usage as a library Input and output as bytes ```python from rembg import remove input_path = 'input.png' output_path = 'output.png' with open(input_path, 'rb') as i: with open(output_path, 'wb') as o: input = i.read() output = remove(input) o.write(output) ``` Input and output as a PIL image ```python from rembg import remove from PIL import Image input_path = 'input.png' output_path = 'output.png' input = Image.open(input_path) output = remove(input) output.save(output_path) ``` Input and output as a numpy array ```python from rembg import remove import cv2 input_path = 'input.png' output_path = 'output.png' input = cv2.imread(input_path) output = remove(input) cv2.imwrite(output_path, output) ``` Force output as bytes ```python from rembg import remove input_path = 'input.png' output_path = 'output.png' with open(input_path, 'rb') as i: with open(output_path, 'wb') as o: input = i.read() output = remove(input, force_return_bytes=True) o.write(output) ``` How to iterate over files in a performatic way ```python from pathlib import Path from rembg import remove, new_session session = new_session() for file in Path('path/to/folder').glob('*.png'): input_path = str(file) output_path = str(file.parent / (file.stem + ".out.png")) with open(input_path, 'rb') as i: with open(output_path, 'wb') as o: input = i.read() output = remove(input, session=session) o.write(output) ``` To see a full list of examples on how to use rembg, go to the [examples](USAGE.md) page. ## Usage as a docker ### Only CPU Just replace the `rembg` command for `docker run danielgatis/rembg`. Try this: ```shell docker run -v path/to/input:/rembg danielgatis/rembg i input.png path/to/output/output.png ``` ### Nvidia CUDA Hardware Acceleration Requirement: using CUDA in docker needs your **host** has **NVIDIA Container Toolkit** installed. [NVIDIA Container Toolkit Install Guide](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) **Nvidia CUDA Hardware Acceleration** needs cudnn-devel so you need to build the docker image by yourself. [#668](https://github.com/danielgatis/rembg/issues/668#issuecomment-2689914205) Here is a example shows you how to build an image and name it *rembg-nvidia-cuda-cudnn-gpu* ```shell docker build -t rembg-nvidia-cuda-cudnn-gpu -f Dockerfile_nvidia_cuda_cudnn_gpu . ``` Be aware: It would take 11GB of your disk space. (The cpu version only takes about 1.6GB). Models didn't included. After you build the image, run it like this as a cli ```shell sudo docker run --rm -it --gpus all -v /dev/dri:/dev/dri -v $PWD:/rembg rembg-nvidia-cuda-cudnn-gpu i -m birefnet-general input.png output.png ``` - Trick 1: Actually you can also make up a nvidia-cuda-cudnn-gpu image and install rembg[gpu, cli] in it. - Trick 2: Try param `-v /somewhereYouStoresModelFiles/:/root/.u2net` so to download/store model files out of docker images. You can even comment the line `RUN rembg d u2net` so when builing the image, it download will no models, so you can download the specific model you want even without the default u2net model. ## Models All models are downloaded and saved in the user home folder in the `.u2net` directory. The available models are: - u2net ([download](https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2net.onnx), [source](https://github.com/xuebinqin/U-2-Net)): A pre-trained model for general use cases. - u2netp ([download](https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2netp.onnx), [source](https://github.com/xuebinqin/U-2-Net)): A lightweight version of u2net model. - u2net_human_seg ([download](https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2net_human_seg.onnx), [source](https://github.com/xuebinqin/U-2-Net)): A pre-trained model for human segmentation. - u2net_cloth_seg ([download](https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2net_cloth_seg.onnx), [source](https://github.com/levindabhi/cloth-segmentation)): A pre-trained model for Cloths Parsing from human portrait. Here clothes are parsed into 3 category: Upper body, Lower body and Full body. - silueta ([download](https://github.com/danielgatis/rembg/releases/download/v0.0.0/silueta.onnx), [source](https://github.com/xuebinqin/U-2-Net/issues/295)): Same as u2net but the size is reduced to 43Mb. - isnet-general-use ([download](https://github.com/danielgatis/rembg/releases/download/v0.0.0/isnet-general-use.onnx), [source](https://github.com/xuebinqin/DIS)): A new pre-trained model for general use cases. - isnet-anime ([download](https://github.com/danielgatis/rembg/releases/download/v0.0.0/isnet-anime.onnx), [source](https://github.com/SkyTNT/anime-segmentation)): A high-accuracy segmentation for anime character. - sam ([download encoder](https://github.com/danielgatis/rembg/releases/download/v0.0.0/vit_b-encoder-quant.onnx), [download decoder](https://github.com/danielgatis/rembg/releases/download/v0.0.0/vit_b-decoder-quant.onnx), [source](https://github.com/facebookresearch/segment-anything)): A pre-trained model for any use cases. - birefnet-general ([download](https://github.com/danielgatis/rembg/releases/download/v0.0.0/BiRefNet-general-epoch_244.onnx), [source](https://github.com/ZhengPeng7/BiRefNet)): A pre-trained model for general use cases. - birefnet-general-lite ([download](https://github.com/danielgatis/rembg/releases/download/v0.0.0/BiRefNet-general-bb_swin_v1_tiny-epoch_232.onnx), [source](https://github.com/ZhengPeng7/BiRefNet)): A light pre-trained model for general use cases. - birefnet-portrait ([download](https://github.com/danielgatis/rembg/releases/download/v0.0.0/BiRefNet-portrait-epoch_150.onnx), [source](https://github.com/ZhengPeng7/BiRefNet)): A pre-trained model for human portraits. - birefnet-dis ([download](https://github.com/danielgatis/rembg/releases/download/v0.0.0/BiRefNet-DIS-epoch_590.onnx), [source](https://github.com/ZhengPeng7/BiRefNet)): A pre-trained model for dichotomous image segmentation (DIS). - birefnet-hrsod ([download](https://github.com/danielgatis/rembg/releases/download/v0.0.0/BiRefNet-HRSOD_DHU-epoch_115.onnx), [source](https://github.com/ZhengPeng7/BiRefNet)): A pre-trained model for high-resolution salient object detection (HRSOD). - birefnet-cod ([download](https://github.com/danielgatis/rembg/releases/download/v0.0.0/BiRefNet-COD-epoch_125.onnx), [source](https://github.com/ZhengPeng7/BiRefNet)): A pre-trained model for concealed object detection (COD). - birefnet-massive ([download](https://github.com/danielgatis/rembg/releases/download/v0.0.0/BiRefNet-massive-TR_DIS5K_TR_TEs-epoch_420.onnx), [source](https://github.com/ZhengPeng7/BiRefNet)): A pre-trained model with massive dataset. ### How to train your own model If You need more fine tuned models try this: ## Some video tutorials - - - - ## References - - - ## FAQ ### When will this library provide support for Python version 3.xx? This library directly depends on the [onnxruntime](https://pypi.org/project/onnxruntime) library. Therefore, we can only update the Python version when [onnxruntime](https://pypi.org/project/onnxruntime) provides support for that specific version. ## Buy me a coffee Liked some of my work? Buy me a coffee (or more likely a beer) Buy Me A Coffee ## Star History [![Star History Chart](https://api.star-history.com/svg?repos=danielgatis/rembg&type=Date)](https://star-history.com/#danielgatis/rembg&Date) ## License Copyright (c) 2020-present [Daniel Gatis](https://github.com/danielgatis) Licensed under [MIT License](./LICENSE.txt)